Cho đường tròn(o,r) từ một điểm A trên (o). trên đường thẳng d lấy điểm M bất kì (M khác A ) kẻ các tuyến MNP và gọi K Là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). kẻ AC vuông góc với MB ,BP vuông góc với MA gọi H là giao điểm của AC và AB ,I là giao điểm của OM và AB ,I là giao điểm của OM và AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔONP cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)NP tại K
Ta có: \(\widehat{OAM}=\widehat{OBM}=\widehat{OKM}=90^0\)
=>O,A,M,B,K cùng thuộc đường tròn đường kính OM
b: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của BA(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AI là đường cao
nên \(OI\cdot OM=OA^2=R^2\)
Xét ΔOAM vuông tại A có AI là đường cao
nên \(OI\cdot IM=IA^2\)
c: AC\(\perp\)BM
OB\(\perp\)BM
Do đó: OB//AC
=>OB//AH
BD\(\perp\)MA
OA\(\perp\)MA
Do đó: BD//OA
=>BH//OA
Xét tứ giác OBHA có
OB//HA
OA//HB
Do đó: OBHA là hình bình hành
Hình bình hành OBHA có OB=OA
nên OBHA là hình thoi
d: OBHA là hình thoi
=>OH là đường trung trực của BA
mà M nằm trên đường trung trực của BA(cmt)
nên O,H,M thẳng hàng
1: Xét tứ giác AMBO có
\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
=>AMBO là tứ giác nội tiếp đường tròn đường kính OM
2: ΔONP cân tại O
mà OK là trung tuyến
nên OK vuông góc NP
\(\widehat{OKM}=\widehat{OAM}=\widehat{OBM}=90^0\)
=>O,K,A,M,B cùng thuộc 1 đường tròn
a, HS tự làm
b, Chú ý O K M ^ = 90 0 và kết hợp ý a) => A,M,B,O,K ∈ đường tròn đường kính OM
c, Sử dụng hệ thức lượng trong tam giác vuông OAM ( hoặc có thể chứng minh tam giác đồng dạng)
d, Chứng minh OAHB là hình bình hành và chú ý A,B thuộc (O;R) suy ra OAHB là hình thoi
e, Chứng minh OH ⊥ AB, OMAB => O,H,M thẳng hàng
1 vì K là trung điểm NP nên OK vuông góc NP ( Quan hệ đường kính và dây cung ) suy ra góc OKM=90 độ .Theo tính chất tiếp tuyến ta có góc OAM=90 độ , góc OBM = 90 độ như vậy K,A,B cùng nhìn OM dưới một góc 90 độ nên cùng nằm trên dường tròn đường kính OM . vậy ..........
a: Xét tứ giác MBOC có
\(\widehat{MBO}+\widehat{MCO}=180^0\)
Do đó: MBOC là tứ giác nội tiếp
a: Xét tứ giác OBMA có \(\widehat{OBM}+\widehat{OAM}=90^0+90^0=180^0\)
nên OBMA là tứ giác nội tiếp
=>O,B,M,A cùng thuộc một đường tròn
b: Ta có: ΔOBC cân tại O
mà OM là đường cao
nên OM là phân giác của góc BOC
Xét ΔOBM và ΔOCM có
OB=OC
\(\widehat{BOM}=\widehat{COM}\)
OM chung
Do đó: ΔOBM=ΔOCM
=>\(\widehat{OBM}=\widehat{OCM}\)
mà \(\widehat{OBM}=90^0\)
nên \(\widehat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)
a) Gọi D là trung điểm của MO
∆OAM vuông tại A có AD là đường trung tuyến ứng với cạnh huyền OM
⇒ AD = OD = MD = OM : 2 (1)
∆OBM vuông tại B có BD là đường trung tuyến ứng với cạnh huyền OM
⇒ BD = OD = MD = OM : 2 (2)
Từ (1) và (2) ⇒ AD = BD = OD = MD
Vậy A, B, O, M cùng thuộc (D, AD)
b) Xét hai tam giác vuông: ∆OHB và ∆OHC có:
OH là cạnh chung
OB = OC = bán kính
⇒ ∆OHB = ∆OHC (cạnh huyền - cạnh góc vuông)
⇒ ∠HOB = ∠HOC (hai góc tương ứng)
⇒ ∠MOB = ∠MOC
Xét ∆MOB và ∆MOC có:
OM là cạnh chung
∠MOB = ∠MOC (cmt)
OB = OC = bán kính)
⇒ ∆MOB = ∆MOC (c-g-c)
⇒ ∠OBM = ∠OCM (hai góc tương ứng)
⇒ ∠OCM = 90⁰
⇒ MC ⊥ OC
Mà OC là bán kính của (O)
⇒ MC là tiếp tuyến của (O)