K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{x-1}\left(x\ge0;x\ne1\right)\)

\(< =>\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\sqrt{x}^2-1^2}\right):\frac{1}{x-1}\)

\(< =>\frac{2\sqrt{x}}{x-1}.\frac{x-1}{1}=2\sqrt{x}\)

chắc là đúng đấy ạ

8 tháng 7 2020

\(A=\frac{2}{\sqrt{2}+1}+\frac{1}{3+2\sqrt{2}}\)

\(=\frac{2\left(3+2\sqrt{2}\right)}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)

\(=\frac{6+4\sqrt{2}+\sqrt{2}+1}{3\sqrt{2}+2\sqrt{4}+3+2\sqrt{2}}=\frac{7+5\sqrt{2}}{3+4+5\sqrt{2}}=1\)

26 tháng 9 2019

????

31 tháng 3 2016

Câu 1 : 

Đk: \(x\ge1\) 

\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)

\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)

với x= 5 thoản mãn điều kiện, x=145 loại

Vậy \(S=\left\{5\right\}\)

22 tháng 6 2016

c) \(C=\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-\left(\sqrt{x}+2\right)}{x+\sqrt{x}+1}=\)

\(C=\frac{x\sqrt{x}+2x+x+2\sqrt{x}-x\sqrt{x}+1}{\left(\left(\sqrt{x}\right)^3-1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)

\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)

\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{1}{x-1}=\)

\(C=\frac{3x+2\sqrt{x}+1}{x-1}\times\frac{1}{x-1}=\frac{3x+2\sqrt{x}+1}{\left(x-1\right)^2}.\)

22 tháng 6 2016

các bạn giúp mình  với 

15 tháng 10 2019

\(\sqrt{9x-9}+1=13\Leftrightarrow3\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

\(2.\text{bạn tự tìm đk}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(A=\frac{2\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-2\right)=\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow x-2\sqrt{x}< 0\Leftrightarrow\left(\sqrt{x}-1\right)^2< 1\Leftrightarrow-1< \sqrt{x}-1< 1\)
\(\Leftrightarrow0< x< 4\)

15 tháng 10 2019

Câu 1:

\(\sqrt{9x-9}+1=13\)\(ĐKXĐ:x\ge1\)

\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)(tm ĐKXĐ)

Câu 2 

ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x-\sqrt{x}}\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\sqrt{x}-2\right)\)

\(=\left(\frac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\frac{1}{x-2\sqrt{x}}\)

b Để A có giá trị âm \(\Rightarrow\frac{1}{x-2\sqrt{x}}< 0\)

vì 1>0

\(\Rightarrow x-2\sqrt{x}< 0\)

\(\Leftrightarrow0< \sqrt{x}< 2\)

\(\Leftrightarrow0< x< 4\)

kết hợp ĐKXĐ: \(\Rightarrow1< x< 4\)

22 tháng 6 2016

sao ko có đề bài ( toàn là rút gọn à)

22 tháng 6 2016

câu cuối sai nhé . đúng thì ntn

\(\frac{3a-3+\sqrt{9a}}{a+\sqrt{a-2}}-\frac{\sqrt{a+1}}{\sqrt{a+2}}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)