K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

a) xét tam giác ABC và tam giác HAC có:

góc C chung

góc BAC = góc AHC (=90độ)

=> ΔABC ∼ ΔHAC (gg)

b) vì ΔABC ∼ ΔHAC (câu a)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(CÁC CẠNH T/Ứ TỈ LỆ)

=> AB.AB= HB.BC

=> \(AB^2\)= HB.BC

26 tháng 4 2016

a) xét tam giác ABC và HAC có:

góc CAB=gócCHA=90độ

chung ACH

suy ra tam giác ABCđồng dạng với tam giác HAC

=> \(\frac{BC}{AC}=\frac{AC}{CH}=>AC^2=BC\cdot CH\)

b) vì tam giác ABC vuông tại A,áp dụng định lý pitago bạn sẽ tính được BC

thay vào \(\frac{BC}{AC}=\frac{AC}{CH}\)

bạn sẽ tính được CH,sau đó tương tự áp dụng pitago cho các tam giác còn lai là ra nhé

kết quả:HC=9,6;AH=7,2;BH=5,4

27 tháng 4 2017

a, Xét \(\Delta ABC\)\(\Delta HAC\) có:

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{AHC}\) (=90o)

=> \(\Delta ABC\) ~\(\Delta HAC\) (g.g)

b, Theo câu a, \(\Delta ABC\)~\(\Delta HAC\)

=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

=> AC2=BC.HC

c, \(\Delta ABC\)\(\widehat{BAC}=90^o\)

=> AB2+AC2=BC2 (định lý Py-ta-go)

hay: 92+122=BC2

=> BC2=225

=> BC=15 (cm)

Theo câu b, AC2=BC.HC

hay: 122=15.HC

=> HC=\(\dfrac{12^2}{15}=9,6\left(cm\right)\)

Ta có: BC=BH+HC

hay: 15=BH+9,6

=> BH=5,4 (cm)

\(\Delta BHA\)\(\widehat{BHA}=90^o\)

=> BH2+AH2=AB2 (định lý Py-ta-go)

hay: 5,42+AH2=92

=> AH2=92-5,42=51,84

=> AH=7,2 (cm)

25 tháng 4 2018

câu a là đồng dạng theo trường hợp g.g

câu b cm cho 2 cặp tam giác abc và ahc đồng dạng sau đó suy ra tỉ số đó

câu c tính ac sau đó tính đc ah( tam giác abc đồng dạng tam giác hac) sau đó tính bh là pitago và hc cx như v

23 tháng 3 2022

             xét tam giác ABC vuông tại A ( gt)

                 \(AB^2+AC^2=BC^2\)

          =>  \(BC^2=AB^2+AC^2\)

                         =  \(21^2+28^2=1225\)

          =>  BC    =  \(\sqrt{1225}=35\left(BC>0\right)\)

             VẬY BC = 35 CM 

 

7 tháng 5 2023

loading...loading...

Do là mình chưa đọc kĩ đề nên là vẽ cạnh BH và CH nó bị sai tỉ lệ, bạn nên vẽ cạnh AC dài ra để hai cạnh đó đúng tỉ lệ nha.

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn