Cho các số thực dương x, y, z thỏa mãn 2x + 3y + 4z = 2016
CMR: \(\frac{3y+4z+2021}{1+2x}+\frac{2x+4z+2021}{1+3y}+\frac{2x+3y+2021}{1+4z}\ge15\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
\(1=2\sqrt{xy}+\sqrt{xz}\le x+y+\dfrac{1}{2}\left(x+z\right)=\dfrac{1}{2}\left(3x+2y+z\right)\)
\(\Rightarrow3x+2y+z\ge2\)
BĐT cần chứng minh tương đương:
\(\dfrac{5xy}{z}+\dfrac{4xz}{y}+\dfrac{3yz}{x}\ge4\)
Ta có:
\(VT=3\left(\dfrac{xy}{z}+\dfrac{xz}{y}\right)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{xz}{y}+\dfrac{yz}{x}\right)\)
\(VT\ge3.2\sqrt{\dfrac{x^2yz}{yz}}+2.2\sqrt{\dfrac{xy^2z}{xz}}+2\sqrt{\dfrac{xyz^2}{xy}}=2\left(3x+2y+z\right)\ge2.2=4\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k
=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3
=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9
=> 6k = 9 - 2 = 7
=> k = 7 : 6 = 7/6
2x =5k
Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Dựa theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
-> x = \(12.\dfrac{3}{2}=18\)
y =\(12.\dfrac{4}{3}=16\)
z =\(12.\dfrac{5}{4}\) = 15
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49.\frac{12}{49}=12\)
\(\Rightarrow\begin{cases}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=12.\frac{5}{4}=15\end{cases}\)
Vậy x = 18; y = 16; z = 15
Giải:
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
+) \(\frac{x}{\frac{3}{2}}=12\Rightarrow x=18\)
+) \(\frac{y}{\frac{4}{3}}=12\Rightarrow y=16\)
+) \(\frac{z}{\frac{5}{4}}=12\Rightarrow z=15\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(18,16,15\right)\)
Đặt biểu thức ở vế trái là A.
Ta có: \(A+3=\frac{2x+3y+4z+2022}{1+2x}+\frac{2x+3y+4z+2022}{1+3y}+\frac{2x+3y+4z+2022}{1+4z}=\frac{4038}{1+2x}+\frac{4038}{1+3y}+\frac{4038}{1+4z}\ge4038.\frac{9}{3+2x+3y+4z}=4038.\frac{9}{2019}=18\)
Dấu "=" xảy ra khi và chỉ khi 2x = 3y = 4z = 672