Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh: BC= 2.AM
( mình chưa học ''Tính chất đường trung tuyến trong tam giác vuông'' nên giải bth giúp mik ạ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác vuông ABC ,vuông tại A, M là trung điểm của BC . Chứng minh AM=1/2 BC
Ai nhanh mình tick
Có : Tam giác ABC vuông tại A
MB=MC(GT)
-> AM=1/2BC ( t/c đường trung tuyến ứng với cạnh huyền trong tgiac vuông )
#Hoctot
Trên tia đối của tia AM lấy D sao cho AM=MD chứng minh tam giác BMA =tam giác CMD suy ra BA=CD và góc BAM=góc MDC mà 2 góc trên nằm ở vị trí so le trong nên AB song song với CD mà AB vuông góc với AC suy ra CD vuông góc với AC chứng minh tam giác BCA=tam giác DAC suy ra BC=AD mà AM=1/2AD suy ra AM=1/2BC
\(AM=\frac{BC}{2}\Rightarrow AM=BM=CM\)
=> tg ABM cân tại M \(\Rightarrow\widehat{ABC}=\widehat{BAM}\)
Và tg ACM cân tại M \(\Rightarrow\widehat{ACB}=\widehat{CAM}\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)
Mà \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\)
=> tg ABC vuông tại A
a)
Sửa đề: ΔBIM=ΔCKM
Xét ΔBIM vuông tại I và ΔCKM vuông tại K có
BM=CM(M là trung điểm của BC)
\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
Lời giải:
Trên tia đối tia $MA$ lấy $D$ sao cho $MD=MA$
Dễ cm $\triangle BMA=\triangle CMD$ (c.g.c)
$\Rightarrow \widehat{MBA}=\widehat{MCD}$
Mà 2 góc này so le trong nên $BA\parallel CD$
$\Rightarrow CD\perp AC$ hay $\widehat{DCA}=90^0$
Cùng từ 2 tam giác bằng nhau trên suy ra $BA=CD$
Xét tam giác $BAC$ và $DCA$ có:
$BA=DC$
$\widehat{BAC}+\widehat{DCA}=90^0$
$AC$ chung
$\Rightarrow BC=DA$
Mà $DA=2AM$ nên $BC=2AM$
Hình vẽ: