K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

Mình hướng dẫn cách làm chung nhé

f(x) chia hết cho g(x) ⇔ f(x) nhận các nghiệm của g(x) làm nghiệm 

Từ đây dễ rồi :]>

22 tháng 10 2020

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

\(f\left(x\right)=5x^4-x^2\left(x-3\right)+3x\left(x-2\right)-6x+2\)

\(=5x^4-x^3+3x^2+3x^2-6x-6x+2\)

\(=5x^4-x^3+6x^2-12x+2\)

\(g\left(x\right)=2x^2\cdot x^2-4x^2+2\left(x+1\right)+5=2x^4-4x^2+2x+7\)

\(f\left(x\right)+g\left(x\right)=7x^4-x^3+2x^2-10x+9\)

\(f\left(x\right)-g\left(x\right)=3x^4-x^3+10x^2-14x-5\)

1: 

a: f(3)=2*3^2-3*3=18-9=9

b: f(x)=0

=>2x^2-3x=0

=>x=0 hoặc x=3/2

c: f(x)+g(x)

=2x^2-3x+4x^3-7x+6

=6x^3-10x+6

P
Phong
CTVHS
20 tháng 6 2023

\(f\left(x\right)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\)

\(f\left(x\right)=\left(x^4+3x^4\right)-\left(x^3-2x^3\right)-\left(3x^2+x^2\right)+x-1\)

\(f\left(x\right)=4x^4+x^3-4x^2+x-1\)

\(g\left(x\right)=x^4+x^2-x^3+x-5+5x^3-x^2-3x^4\)

\(g\left(x\right)=\left(x^4-3x^4\right)+\left(5x^3-x^3\right)+\left(x^2-x^2\right)+x-5\)

\(g\left(x\right)=-2x^4+4x^3+x-5\)

`@` `\text {Ans}`

`\downarrow`

`a,`

\(f(x) -3x^2 + x - 1 + x^4 - x^3 - x^2 + 3x^4 + 2x^3\)

`= (x^4 +3x^4) + (-x^3 +2x^3) + (-3x^2 - x^2) + x - 1`

`= 4x^4 + x^3 -4x^2 + x -1`

\(g(x) = x^4 + x^2 - x^3 + x - 5 + 5x^3 - x^2 - 3x^4\)

`= (x^4-3x^4) + (-x^3+5x^3) + (x^2 - x^2) + x -5`

`= -2x^4 + 4x^3 +x - 5`

16 tháng 10 2019

a.  64.4x=45

43.4x=45

4x=45:43

4x=42

x=2

14 tháng 8

7 tháng 5 2018

a)

f(x)=9-x5+4x-2x3+x2-7x4

= -x5-7x4-2x3+x2+4x+9

g(x)=x5-9+2x2+7x4+2x3-3x

=x5+7x4+2x3+2x2-3x-9

b)h(x)=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)

= -x5+(-7x4)+(-2x3)+x2+4x+9+x5+7x4+2x3-3x+(-9)+2x2

=(-x5+x5)+(-7x4+7x4)+(-2x3+2x3)+(x2+2x2)+(4x-3x)+(-9+9)

= 3x2+x

c)h(x)=3x2+x

Ta có:3x2+x=0

x(3x+1)=0

TH1:x=0

TH2:3x+1=0

=>x=-1/3

Vậy=0 và -1/3 là nghiệm của h(x)

x=2005

nên x+1=2006

\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)

\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)

=x=2005