\(\frac{2001x2003+2003x2005}{2003x4006}\)tính nhanh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\dfrac{16\times25-22\times16}{7\times3+5\times7}=\dfrac{16\times\left(25-22\right)}{7\times\left(5+3\right)}=\dfrac{16\times3}{7\times8}\)
\(=\dfrac{6}{7}\)
2,\(\dfrac{2001\times2003+2003\times2005}{2003\times4006}=\dfrac{2003\times\left(2001+2005\right)}{2003\times4006}=\dfrac{2003\times4006}{2003\times4006}=1\)
\(\dfrac{1}{2001.2003}+\dfrac{1}{2003.2005}+...+\dfrac{1}{2011.2013}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2001.2003}+\dfrac{1}{2003.2005}+...+\dfrac{1}{2011.2013}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2001}-\dfrac{1}{2003}+\dfrac{1}{2003}-\dfrac{1}{2005}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2001}-\dfrac{1}{2013}\right)=\dfrac{2}{1342671}\)
=1/2.(2/2001.2003+2/2003.2005+.....+2/2011.2013)
=1/2(1/2001-1/2003+1/2003-1/2005+....+1/2011-1/2013)
=1/2(1/2001-1/2013)
=2/1342671
a=511/256
b=647/20
c=mình đang suy nghĩ,nhưng nếu bạn k cho mình thì bạn sẽ có câu trả lời
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 1 + ( 1 - 1/2) + ( 1/2 - 1/4) + ( 1/4 - 1/8) + ( 1/8 - 1/16) + ( 1/16 - 1/32) + (1/32 - 1/64) + ( 1/64 - 1/128) + (1/128 - 1/256)
= 1 + 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256
= 2 - 1/256
= 511/256
Câu b bạn có viết sai đề không vậy?
2005 x 2004 - 1/2003 x 2005 + 2004
=2004 x ( 2005 + 1 ) - ...?
= 2005 x ( 2003 + 1 ) - 1/ 2003 x 2005 + 2004
= 2005 x 2003 + 2005 x 1 - 1/ 2003 x 2005 + 2004
= 2005 x 2003 + 2005 -1/ 2003 x 2005 + 2004
= 2003 x 2005 + 2004/ 2003 x 2005 + 2004
= 1 ( vì TS=MS)
Theo cách mk học sẽ suy ra lun
=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2001-1/2003+1/2003-1/2005
=1-1/2005
=2004/2005
\(\frac{2005\times2004-1}{2003\times2005+2004}\)
=\(\frac{2005\times2004-1}{2003\times2005+\left(2005-1\right)}\)
=\(\frac{2005\times2004-1}{2003\times2005+2005-1}\)
=\(\frac{2005\times2004-1}{\left(2003+1\right)\times2005-1}\)
=\(\frac{2005\times2004-1}{2004\times2005-1}\)
=1
\(\frac{2001x2003+2003x2005}{2003x4006}\)
=\(\frac{2003x.\left(2001+2005\right)}{2003x4006}\)
=\(\frac{2003x.4006}{2003x.4006}\)
=\(\frac{1.1}{1.1}\)
=1
\(\frac{2001x2003+2003x2005}{2003x4006}=\frac{2003x\left(2001+2005\right)}{2003x4006}\)
\(=\frac{2003x4006}{2003x4006}=1\)