K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

B ơi mình không hiểu sao 90x tách thành 3.x.9^2 được ạ

29 tháng 6 2020

và dòng dưới nữa sao từ hằng đẳng thức (A-B)^3 lại thành A^3-B^3 vậy

5 tháng 4 2016

\(\begin{cases}27x^3+3x+\left(9y-7\right)\sqrt{6-9y}=0\left(1\right)\\\frac{x^2}{3}+y^2+\sqrt{2-3x}-\frac{109}{81}=0\left(2\right)\end{cases}\)

Với điều kiện \(x\le\frac{2}{3};y\le\frac{2}{3}\) (1) tương đương với : \(\left(9x^2+1\right)3x=\left(6-9y+1\right)\sqrt{6-9y}\)

Đặt \(u=3x,v=\sqrt{6-9y}\) ta có \(\left(u^2+1\right)u=\left(v^2+1\right)v\)

Xét hàm số : \(f\left(t\right)=\left(t^2+1\right)t\) có \(f'\left(t\right)=3t^2+1>0\) nên hàm số luôn đồng biến trên R

Suy ra \(u=v\Leftrightarrow3x=\sqrt{6-9y}\Leftrightarrow\begin{cases}x\ge0\\y=\frac{2}{3}-x^2\left(3\right)\end{cases}\)

Thế (3) vào (2) ta được \(\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}=0\left(4\right)\)

Nhận xét \(x=0;x=\frac{2}{3}\) không phải là nghiệm của (4)

Xét hàm số : \(g\left(x\right)=\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}\)

Ta có \(g'\left(x\right)=2x\left(2x-1\right)-\frac{3}{2\sqrt{2-3x}}<0\), mọi \(x\in\left(0;\frac{2}{3}\right)\)

Nên hàm số g(x) nghịch biến trên \(\left(0;\frac{2}{3}\right)\)

Dễ thấy \(x=\frac{1}{3}\) là nghiệm của (1), suy ra \(y=\frac{5}{9}\) nên hệ có nghiệm duy nhất là \(\left(\frac{1}{3};\frac{5}{9}\right)\)

7 tháng 2 2020

1/ \(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc   \(x-1=0\)

hoặc   \(x+2=0\)

\(\Leftrightarrow\)\(x=-3\)

hoặc   \(x=1\)

hoặc   \(x=-2\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;1;-2\right\}\)

2/ \(x^3-6x^2-x+30\)

\(\Leftrightarrow x^3+2x^2-8x^2-16x+15x+30=0\)

\(\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x-5x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x-3=0\)

hoặc   \(x-5=0\)

\(\Leftrightarrow\)\(x=-2\)

hoặc   \(x=3\)

hoặc   \(x=5\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-2;3;5\right\}\)

3/ \(x^3-9x^2+6x+16=0\)

\(\Leftrightarrow x^3+x^2-10x^2-10x+16x+16=0\)

\(\Leftrightarrow x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-10x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-8x-2x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-8\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc  \(x-8=0\)

hoặc  \(x-2=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc   \(x=8\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;8;2\right\}\)

7 tháng 2 2020

4/ Đề bài sai ! Sửa lại nhé :

 \(2x^3-x^2+5x+3=0\)

\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)

\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2}\right\}\)

NV
26 tháng 2 2023

a.

\(x^2+4y^2+4xy=0\)

\(\Leftrightarrow\left(x+2y\right)^2=0\)

\(\Leftrightarrow x+2y=0\)

\(\Leftrightarrow x=-2y\)

Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)

b.

\(2y^4-9y^3+2y^2-9y=0\)

\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)

\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)

c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được

21 tháng 2 2018

\(x^5-27+x^3-27x^2=0\)

\(\left(x^5+x^3\right)-\left(27x^2+27\right)=0\)

\(x^3\left(x^2+1\right)-27\left(x^2+1\right)=0\)

\(\left(x^3-27\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x^3-27=0\)( Vì \(x^2+1>0\forall x\))

<=> x3 = 27

<=> x3 = 33

<=> x= 3

3 tháng 3 2020

nhận thấy x = 0 không là nghiệm của phương trình

Chia 2 vế phương trình cho x2, ta được : 

\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\)  ( 1 )

đặt \(t=x+\frac{3}{x}\)

( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)

\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)

Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)