Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x+3=0\)
hoặc \(x-1=0\)
hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=-3\)
hoặc \(x=1\)
hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;1;-2\right\}\)
2/ \(x^3-6x^2-x+30\)
\(\Leftrightarrow x^3+2x^2-8x^2-16x+15x+30=0\)
\(\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+15\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x-5x+15\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x-3=0\)
hoặc \(x-5=0\)
\(\Leftrightarrow\)\(x=-2\)
hoặc \(x=3\)
hoặc \(x=5\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-2;3;5\right\}\)
3/ \(x^3-9x^2+6x+16=0\)
\(\Leftrightarrow x^3+x^2-10x^2-10x+16x+16=0\)
\(\Leftrightarrow x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-10x+16\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-8x-2x+16\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-8\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-8=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=-1\)
hoặc \(x=8\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-1;8;2\right\}\)
4/ Đề bài sai ! Sửa lại nhé :
\(2x^3-x^2+5x+3=0\)
\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)
\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2-x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2}\right\}\)
a) \(x^5-27+x^3-27x^2\) = 0
\(\Leftrightarrow x^3\left(x^2+1\right)-27\left(x^2+1\right)\)= 0
\(\Leftrightarrow\left(x^2+1\right)\left(x^3-27\right)=0\)
\(\Leftrightarrow x^3-27=0\) (Vì \(x^2+1>0\))
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+2\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{27}{4}\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}\right]=0\)
\(\Leftrightarrow x-3=0\) (Vì \(\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}>0\))
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình là S = {3}
b)\(x^3-9x^2+19x-11=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(8x^2-8x\right)+\left(11x-11\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-8x+11\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-\left(4+\sqrt{5}\right)x-\left(4-\sqrt{5}\right)x+11\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left\{x\left[x-\left(4+\sqrt{5}\right)\right]-\left(4-\sqrt{5}\right)\left[x-\left(4+\sqrt{5}\right)\right]\right\}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4-\sqrt{5}\right)\left(x-4+\sqrt{5}\right)=0\)
\(\Leftrightarrow x-1=0\) hoặc \(x-4-\sqrt{5}=0\) hoặc \(x-4+\sqrt{5}=0\)
\(\Leftrightarrow x=1\) hoặc \(x=4+\sqrt{5}\) hoặc \(x=4-\sqrt{5}\)
Vậy phương trình có tập nghiệm là \(S=\left\{1;4+\sqrt{5};4-\sqrt{5}\right\}\)
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
Bài làm
27x2( x + 3 ) - 12( x2 + 3x ) = 0
<=> 27x2( x + 3 ) - 12x( x + 3 ) = 0
<=> x( 27x - 12 )( x + 3 ) = 0
<=> x = 0 hoặc \(\orbr{\begin{cases}27x-12=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{12}{27}\\x=-3\end{cases}}}\)
Vậy S = { 0; 12/27; -3 }
# Học tốt #
27x2 ( x + 3 ) - 12x ( x + 3) = 0
3x ( x + 3 ) ( 9x - 4 ) = 0
=>\(\hept{\begin{cases}3x=0\\x+3=0\\9x-4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=-3\\x=\frac{4}{9}\end{cases}}\)
Vậy ngiệm của đa thức là: \(S=\left(-3;\frac{4}{9};0\right)\)
a/. x3 - 9x2 +27x - 19 = 0
<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0
<=> (x - 3)3 + 8 = 0
<=> (x - 3 + 2) [(x - 3)2 - 2(x-3) +4] = 0
<=> (x -1)(x2 - 6x+ 9 -2x +6 +4) =0
<=> (x - 1)(x2 - 8x + 19) = 0
<=> x - 1 = 0 => x = 1
Vậy S = {1}
Xem lại đề câu b nha bạn?
c/. x3 + 1 -7x -7 =0
<=> (x3 + 1) -7(x+1)=0
<=> (x+1)(x2-x+1) -7(x+1)=0
<=> (x+1)(x2-x+1-7)=0
<=> x + 1 = 0 hay x2 -x - 6 = 0
<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0
<=> x(x - 3) +2(x-3) = 0
<=> (x - 3)(x+2) = 0
<=> x = -1 hay x = 3 hay x = -2
Vậy S = {-1;3;-2}
X3 - X2-8X2+8X+19X-19=0
<=>X2(X-1)-8X(X-1)+19(X-1)=0
<=>(X-1)(X2-8X+19)=0
vi X2-8X+19=(X-4)2+3>3
a)x=-17
b)x=9/10
c)x=4\(\frac{1}{3}\)
tick đi giải chi tiết cho
a)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
7x+35/3=2x+6/1=>(7x+35)1=3(2x+6)
=>x=-17
b)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
17x+19/20=27x+10/20=>(17x+19)20=20(27x+10)
c)<=>(x-2)^3+(x-4)^3+(x-7)^3+(-3)(x-2)(x-4)(x-7)=19(3x-13)
=>19(3x-13)=0
rút gọn 57x=247
=>19.3x=19.13
=>3x=13
=>x=13/3
=>x=4\(\frac{1}{3}\)
a) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x-4\right)\left(x+4\right)\le10\)
\(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-16\right)\le10\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240\le10\)
\(\Leftrightarrow\left(5x^3-5x^3\right)-\left(30x^2-15x^2-15x^2\right)-\left(45x-15x\right)+5-240\le10\)
\(\Leftrightarrow30x-235\le10\)
\(\Leftrightarrow30x\le10+235\)
\(\Leftrightarrow30x\le245\)
\(\Leftrightarrow30x:30\le245:30\)
\(\Leftrightarrow x\le\dfrac{49}{6}\)
Vậy nghiệm của bất phương trình là: \(x\le\dfrac{49}{6}\)
b) \(\left(3x-2\right)\left(9x^2+6x+4\right)+27x\left(\dfrac{1}{3}-x\right)\left(\dfrac{1}{2}+x\right)\ge1\)
\(\Leftrightarrow27x^3-8+27x\left(\dfrac{1}{9}-x^2\right)\ge1\)
\(\Leftrightarrow27x^3-8+3x-27x^3\ge1\)
\(\Leftrightarrow\left(27x^3-27x^3\right)-8+3x\ge1\)
\(\Leftrightarrow-8+3x\ge1\)
\(\Leftrightarrow3x\ge1+8\)
\(\Leftrightarrow3x\ge9\)
\(\Leftrightarrow3x:3\ge9:3\)
\(\Leftrightarrow x\ge3\)
Vậy nghiệm của bất phương trình là \(x\ge3\)
a: =>5x(x^2-6x+9)-5(x^3-3x^2+3x-1)+15(x^2-16)<=10
=>5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240<=10
=>30x-235<=10
=>30x<=245
=>x<=49/6
b: =>27x^3-8+27x(1/9-x^2)>=1
=>27x^3-8+3x-27x^3>=1
=>3x>=9
=>x>=3
\(x^5-27+x^3-27x^2=0\)
\(\left(x^5+x^3\right)-\left(27x^2+27\right)=0\)
\(x^3\left(x^2+1\right)-27\left(x^2+1\right)=0\)
\(\left(x^3-27\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x^3-27=0\)( Vì \(x^2+1>0\forall x\))
<=> x3 = 27
<=> x3 = 33
<=> x= 3