Cho dường tròn (O) đường kính AB. Dây MN vuông góc với AB tại I. Trên MI lấy điểm D vẽ dây AC đi qua D
a) chúng minh DCBI nội tiếp
b)chứng minh AC.AD+BI.BA=\(4R^2\)
c) gọi K là tâm đường tròn ngoại tiếp của MCD chứng minh M,K,B thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: AI=2cm
AB=AO*2=12cm
Xét (O) có
ΔMAB nội tiếp
AB là đường kính
Do đó: ΔMAB vuông tại M
=>MA^2=AI*AB=2*12=24
=>MA=2căn 6(cm)
b: Xét ΔAMD và ΔACM có
gócc AMD=góc ACM
góc MAD chung
Do đó:ΔAMD đồng dạng với ΔACM
=>AM/AC=AD/AM
=>AM^2=AD*AC
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
Xét tứ giác AECK có \(\widehat{AEC}+\widehat{AKC}=90^0+90^0=180^0\)
nên AECK là tứ giác nội tiếp
b: Xét ΔIAB có
BK,IE là các đường cao
BK cắt IE tại C
Do đó: C là trực tâm của ΔIAB
=>AC\(\perp\)IB tại D
Xét tứ giác CEBD có \(\widehat{CEB}+\widehat{CDB}=90^0+90^0=180^0\)
nên CEBD là tứ giác nội tiếp
Xét tứ giác AKCE có \(\widehat{AKC}+\widehat{AEC}=90^0+90^0=180^0\)
nên AKCE là tứ giác nội tiếp
Xét tứ giác IKCD có \(\widehat{IKC}+\widehat{IDC}=90^0+90^0=180^0\)
nên IKCD là tứ giác nội tiếp
Ta có: \(\widehat{DKC}=\widehat{DIC}\)(DIKC nội tiếp)
\(\widehat{EKC}=\widehat{EAC}\)(KAEC nội tiếp)
mà \(\widehat{DIC}=\widehat{EAC}\left(=90^0-\widehat{DBA}\right)\)
nên \(\widehat{DKC}=\widehat{EKC}\)
=>KC là phân giác của góc DKE
Ta có: \(\widehat{KDC}=\widehat{KIC}\)(DIKC là tứ giác nội tiếp)
\(\widehat{EDC}=\widehat{EBC}\)(EBDC nội tiếp)
mà \(\widehat{KIC}=\widehat{EBC}\left(=90^0-\widehat{KAB}\right)\)
nên \(\widehat{KDC}=\widehat{EDC}\)
=>DC là phân giác của góc KDE
Xét ΔKED có
DC,KC là các đường phân giác
Do đó: C là tâm đường tròn nội tiếp ΔKED
=>C cách đều ba cạnh của ΔKED
Vì em là học sinh lớp 9 nên cô chỉ hưỡng dẫn thôi nhé :) Cố gắng thi tốt nhé :)
a. ADBE là hình thoi vì có hai đường chéo vuông góc và cắt nhay tại trung điểm mỗi đường.
b. Tứ giác DMBI có góc DMB + góc DIB = 180 độ nên nó là tứ giác nội tiếp.
c. Cô nghĩa là chứng minh B, I, E thẳng hàng ms đúng, em xem lại xem.
Ta có: \(\widehat{MIE}=\widehat{MDB}=\widehat{MEB}\) suy ra tam gaisc MIE cân tại M hay MI = ME. Lại có ME = MD nên MD = MI.
d.Hệ thức có được là do \(\Delta BDC\sim\Delta IMC\left(g-g\right)\)
e. Ta chứng minh \(\widehat{O'IC}=\widehat{MIB}\)
Thật vậy, \(\widehat{O'IC}=\widehat{O'CI}=\widehat{DEA}=\widehat{MDO}=\widehat{MIB}\).
Khi đó \(90^0=\widehat{O'IC}+\widehat{O'IB}=\widehat{MIB}+\widehat{O'IB}\)
Vậy MI vuông góc O'I hay MI là tiếp tuyến (O')
chỉ cần câu c) thôi nhé
help :(