K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

Bất đẳng thức cần chứng minh tương đương với \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge12\)

 Áp dụng bất đẳng thức AM-GM ta có  

\(1=a^2+b^2+c^2+2abc\ge4\sqrt[4]{2a^3b^3c^3}\)

\(\Rightarrow abc\le\frac{1}{8};\Rightarrow\text{​​}\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\ge3\sqrt[3]{64}=12\)

suy ra điều phải chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

NV
5 tháng 7 2020

Đặt \(\left\{{}\begin{matrix}a+b+c=p\Rightarrow p=2\\ab+bc+ca=q\\abc=r\end{matrix}\right.\) \(\Rightarrow0\le q\le\frac{1}{3}p^2=\frac{4}{3}\)

Ta cần chứng minh: \(q^2-2pr-2r\le1\Leftrightarrow q^2-6r\le1\)

TH1: \(0\le q< 1\Rightarrow q^2-6r\le q^2< 1\) \(\Rightarrow\) BĐT đúng

TH2: \(1\le q\le\frac{4}{3}\)

Theo Schur: \(r\ge\frac{p\left(4q-p^2\right)}{9}=\frac{8\left(q-1\right)}{9}\Rightarrow q^2-6r\le q^2-\frac{16}{3}\left(q-1\right)\)

Do đó ta chỉ cần chứng minh: \(q^2-\frac{16}{3}\left(q-1\right)\le1\)

\(\Leftrightarrow3q^2-16q+13\le0\)

\(\Leftrightarrow\left(q-1\right)\left(3q-13\right)\le0\) (luôn đúng \(\forall x\in\left[1;\frac{4}{3}\right]\))

BĐT được chứng minh hoàn tất

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

6 tháng 7 2020

Ta chứng minh bất đẳng thức mạnh hơn: \(a^2b^2+b^2c^2+c^2a^2+\frac{11}{8}abc\le1\)

Thật vậy: \(VP-VT=\frac{1}{32}\sum\left(a-b\right)^2\left(a+b-c\right)^2+\frac{5}{16}\sum ab\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi $a=b=1,c=0$ và các hoán vị.

1 tháng 3 2021

`a,b,c\in [0;1]`

`=>a(a-1)(b-1)\ge 0`

`<=> a(ab-a-b+1)\ge 0`

`<=> a^2b\ge a^2+ab-a`

Hoàn toàn tương tự:

`=>a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2+ab+bc+ac+1-a-b-c(***)`

Lại có:

`(a-1)(b-1)(c-1)\le 0`

`<=> (ab-a-b+1)(c-1)\le 0`

`<=abc-(ab+bc+ac)+a+b+c-1\le 0`

`<=> ab+bc+ac+1\geq a+b+c+abc\geq a+b+c(******)`

`(***),(******)=> a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2`

bạn tham khảo :https://hoc24.vn/hoi-dap/question/825780.html

30 tháng 8 2021

undefined

30 tháng 8 2021

\(VT=\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{ac+ab+bc+c^2}}+\sqrt{\dfrac{b^2c^2}{a^2+ac+ab+bc}}+\sqrt{\dfrac{a^2c^2}{ab+bc+b^2+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(b+c\right)\left(a+c\right)}}\le\dfrac{\dfrac{ab}{b+c}+\dfrac{ab}{a+c}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)}{2}\\ \Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{2}{2}=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

26 tháng 4 2020

BĐT cần  chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Áp dụng BĐT Cô-si cho 3 số dương ,ta có :

\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

tương tự :  \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\)\(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)

Cộng 3 BĐT trên theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)

Dấu "=" xảy ra khi a = b = c = 1

Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)

Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)

\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)

mà \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)

Áp dụng các bđt trên vào bài toán ta có

 ∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)\(\frac{a+b+c}{a+b+c}=1\)

Bất đẳng thức được chứng minh

Dấu "=" xảy ra khi a=b=c=1

28 tháng 2 2020

Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm

17 tháng 12 2017

đặt \(3^{13579}=m\).

Vì (3;13579)=1 nên (13579;m)=1 (*)

đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m

Theo nguyên lý Dirichle  trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư

Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)

giả sử x>y

=>13579^x-13579^y chia hết cho m

=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m

mà 13579^y không chia hết cho m nên 13579^x-y  -1 chia hết cho m

=>tồn tại n=x-y thỏa mãn đề bài

17 tháng 12 2017

tại sao 13579^y ko chia hết cho m

25 tháng 7 2020

ta có a(1-b) \(\ge\)a2(1-b); b(1-c) \(\ge\)b2(1-c); c(1-a) \(\ge\)c2(1-a)

suy ra (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)a(1-b)+b(1-c)+c(1-a)

=> (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)(a+b+c)-(ab+bc+ca)

mà (1-a)(1-b)(1-c) +abc\(\ge\)0 => 1\(\ge\)(a+b+c)-(ab+bc+ca)

vậy a2+b2+c2 \(\le\)1+a2b+b2c+c2a

dấu đẳng thức xảy ra <=> trong 3 số có 1 số bằng 0 và 1 số bằng 1

3 tháng 8 2020

Ta có: \(a.\left(1-b\right)\ge a^2.\left(1-b\right)\)

          \(b.\left(1-c\right)\ge b^2.\left(1-c\right)\)

          \(c.\left(1-a\right)\ge c^2.\left(1-a\right)\)

Suy ra \(\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le a.\left(1-b\right)+b.\left(1-c\right)+c.\left(1-a\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Mà \(\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc\ge0\) \(\Rightarrow1\ge\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Vậy \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)

Dấu dẳng thức xảy ra \(\Leftrightarrow\)trong ba số đó có một số bằng 0, một số bằng 1