K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

\(\left(x+2\right)^2-6\left(y-1\right)^2+xy=24\Leftrightarrow x^2+4x-6y^2+12y+xy=26\)

\(\Leftrightarrow\left(x^2-2xy+4x\right)+\left(3xy-6y^2+12y\right)=26\Leftrightarrow x\left(x-2y+4\right)+3y\left(x-2x+4\right)=26\)

\(\Leftrightarrow\left(x-2y+4\right)\left(x+3y\right)=26\)

Vì x,y nguyên dương nên có các TH sau:

\(\hept{\begin{cases}x+3y=1\\x-2y+4=26\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\x-2y=22\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{68}{5}\\y=\frac{-21}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=26\\x-2y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=26\\x-2y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{43}{5}\\y=\frac{29}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=2\\x-2y+4=13\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=2\\x-2y=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{31}{5}\\y=\frac{-7}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=13\\x-2y+4=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=13\\x-2y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}\left(chon\right)}}}\)

Vậy (x;y)=(4,3)