K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{26\cdot31}\)

\(=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{26\cdot31}\right)\)

\(=5\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\cdot\left(1-\frac{1}{31}\right)=5\cdot\frac{30}{31}=\frac{150}{31}>1\)

hay A>1(đpcm)

22 tháng 7 2019

#)Giải :

Ta có :

\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)=5\left(1-\frac{1}{31}\right)=5\times\frac{30}{31}=\frac{150}{31}>1\)

\(\Rightarrow A>1\)

19 tháng 4 2019

\(A=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)

\(A=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(A=5.\left(1-\frac{1}{31}\right)\)

\(A=5.\frac{30}{31}\)

\(A=\frac{150}{31}>1\)

Đề hơi lạ nhỉ, vì quá rõ ràng rùi 52/1.6 = 25/6 > 1 nên A lớn hơn 1

12 tháng 4 2017

A= 52 ​​/1.6 + 52 /6.11 +...+ 52​ /26.31
..

​=> A= 5.( 5/ 1.6 + 5/ 6.11 +...+ 5 /26.31)

​=> A= 5.( 1- 1/6 + 1/6 - 1/11 +...+ 1/26 - 1/31)

​=> A= 5.( 1 - 1/31 )

​=> A= 5. 30/31 = 150/31 > 1

12 tháng 4 2017

=>A=52(1/1.6+1/6.11+...+1/26.31)

=>A=25/2(2/1.6+2/6.11+...+2/26.31)

=>A=25/2(1/1-1/6+1/6-1/11+....+1/26-1/31)

=>A=25/2(1+0+0+.....+1/31)

=>A=25/2X34/31

=>A=850/62

=>A=425/31

=>A>1(425>31=>A<1)

5 tháng 5 2018

Có: \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)

\(=5.\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{31-26}{26.31}\right)\)

\(=5.\left(\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+...+\frac{31}{26.31}-\frac{26}{26.31}\right)\)

\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5.\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}=\frac{150}{31}>\frac{31}{31}=1\)

\(\Rightarrow A>1\)

5 tháng 5 2018

Ta có: A=\(\frac{5^2}{1.6}\)+\(\frac{5^2}{6.11}\)+...+\(\frac{5^2}{26.31}\)

=5.(\(\frac{5}{1.6}\)+\(\frac{5}{6.11}\)+...+\(\frac{5}{26.31}\))

=5.(1-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)+...+\(\frac{1}{26}\)-\(\frac{1}{30}\))

=5.(1-\(\frac{1}{30}\))

=5.\(\frac{29}{30}\)

=\(\frac{29}{6}\)>1

Hay A>1

=> đpcm

25 tháng 2 2020

a) áp dụng dãy số cách đều đi

25 tháng 2 2020

a, 1+6+11+16+...+46+51

Số số hạng là : (51-1):5+1 = 11 ( số )

Tổng là : (51+1).11:2=286

b, Đặt A = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+\dfrac{5^2}{26.31 } \)

\(\dfrac{1}{5}A=\) \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\)

\(\dfrac{1}{5}A=\) \(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\)

\(\dfrac{1}{5}A=1-\dfrac{1}{31}\)

\(\dfrac{1}{5}A=\dfrac{30}{31}\)

\(A=\dfrac{30}{31}:\dfrac{1}{5}=\dfrac{150}{31}\)

Vậy..

Q=5(5/1x6+5/6x11+5/11x16+....+5/26x31)

Q=5(1/1-1/6+1/6-1/11+1/11-1/16+....+1/26-1/31)

Q=5(1/1-1/31)

Q=5x30/31

Q=150/31

\(Q=\frac{25}{1.6}+\frac{25}{6.11}+\frac{25}{11.16}+......+\frac{25}{26.31}.\)

\(Q=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\right)\)

\(Q=5\left(1-\frac{1}{31}\right)\)

CÒN ĐÔU PN TỰ LÀM NHA

14 tháng 4 2018

Ta có : 

\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)

\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)

\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(A=5\left(1-\frac{1}{31}\right)\)

\(A=5.\frac{30}{31}\)

\(A=\frac{150}{31}>1\)

\(\Rightarrow\)\(A>1\)

Vậy \(A>1\)

Chúc bạn học tốt ~ 

30 tháng 4 2018

Ko cần dài dòng vậy đâu,A=\(\frac{5^2}{1.6}+\left(\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\right)\)

Ta thấy \(\frac{5^2}{1.6}>1\)và tổng trong ngoặc >0  nên =>A>1

17 tháng 6 2016

Ta có:

\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)

\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)

\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(A=5\left(\frac{1}{1}-\frac{1}{31}\right)\)

\(A=5.\frac{30}{31}\)

\(A=\frac{150}{31}\)

Vậy \(A=\frac{150}{31}\)