Cho a,b>0. CM: a+b >= 12.ab/9+ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
c) Ta có: ΔABD=ΔEBD(cmt)
nên BA=BE(hai cạnh tương ứng) và DA=DE(Hai cạnh tương ứng)
Xét ΔADI vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADI}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADI=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AI=EC(hai cạnh tương ứng)
Ta có: BA+AI=BI(A nằm giữa B và I)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(cmt)
và AI=EC(cmt)
nên BI=BC
Xét ΔBIC có BI=BC(cmt)
nên ΔBIC cân tại B(Định nghĩa tam giác cân)
a: AK=12/2=6cm
AI=9/2=4,5cm
AI<AK
=>I nằm giữa A và K
=>IK=1,5cm
b: K là trung điểm của AB là điều đề bài cho ngay từ đầu rồi bạn