\(x^2+y^2+z^2\le14\)
\(Cm: x+2y-3z\le14\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề của bạn có cả a,b,c,x,y,z nên ở đây mình sẽ lấy biến là a,b,c thôi nhé!
\(a^2+b^2+c^2-4a-4b-6c\le-16\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\le1\)
Áp dụng BDT Bunhiacopxki, ta có: \(9\ge\left(2^2+2^2+1\right)\left[\left(a-2\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\right]\ge\left(2\left(a-2\right)+2\left(b-2\right)+2\left(c-3\right)\right)^2\)
\(\Leftrightarrow9\ge\left(2a+2b+c-11\right)^2\)
\(\Leftrightarrow-3\le2a+2b+c-11\le3\)
\(\Leftrightarrow8\le2a+2b+c\le14\)
P/s: Dạng này hình như có trong đề đại học đó :)
a) x ∈ {-6; -5; ...; 9; 10}
Tổng của chúng là:
-6 + (-5) + ... + 5 + 6 + 7 + 8 + 9 + 10
= 7 + 8 + 9 + 10
= 34
b) x ∈ {-15; 13; ...; 12; 14}
Tổng của chúng:
-15 + (-14) + ... + 13 + 14
= -15
c) x ∈ {-2002; -2001; ...; 2002; 2003}
Tổng của chúng:
-2002 + (-2001) + ... + 2002 + 2003
= 2003
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
\(\frac{311}{35}\le x\le14\)
\(\Leftrightarrow8,9\le x\le11\)
\(\Leftrightarrow x\in\left\{9;10;11\right\}\)
Vậy \(x\in\left\{9;10;11\right\}\)
\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)
\(\Rightarrow P\ge x+2y+3z-3\)
\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)
\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)