Giải phương trình \(\frac{\left|x\right|-6}{x^2-36}=2\)
Em cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
2) đặt \(x^2+x+1=t\left(t>0\right)\) ==> \(x^2+x+2=t+1\)
nên pt trên trở thành
\(\left(\frac{1}{t}\right)^2+\left(\frac{1}{t+1}\right)^2=\frac{13}{36}\)
<=> \(\frac{1}{t^2}+\frac{1}{t^2+2t+1}=\frac{13}{36}\)
<=> \(13t^4+26t^3-59t^2-72t-36=0\)
<=> \(13t^4-26t^3+52t^3-104t^2+45t^2-90t+18t-36=0\)
<=> \(13t^3\left(t-2\right)+52t^2\left(t-2\right)+45t\left(t-2\right)+18\left(t-2\right)=0\)
<=>\(\left(t-2\right)\left(13t^3+52t^2+45t+18\right)=0\)
<=> \(\left(t-2\right)\left(t+3\right)\left(13t^2+13t+6\right)=0\)
<=> \(\orbr{\begin{cases}t=2\left(tmdk\right)\\t=-3\left(ktmdk\right)\end{cases}}\)
đến đây bạn thay vào làm nốt nhá
1.
Đặt \(a=\frac{x\left(5-x\right)}{x+1};b=x+\frac{5-x}{x+1}\)
Ta cần giải pt : \(a.b=6\)(1)
Ta có: \(a+b=\frac{x\left(5-x\right)}{x+1}+x+\frac{5-x}{x+1}=\frac{5x-x^2+x^2+x+5-x}{x+1}=5\)
\(\Rightarrow a=5-b\)
Thế \(a=5-b\)vào (1)
\(\Rightarrow\left(5-b\right)b=6\)
\(\Leftrightarrow b^2-5b+6=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=2\\b=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x+\frac{5-x}{x+1}=2\\x+\frac{5-x}{x+1}=3\end{cases}}}\)
Giải 2 pt trên, ta có nghiệm : \(x=1\)
để ý 1+1/x(x+2)=(x2+2x+1)/x(x+2)=(x+1)2/x(x+2)
+ 1+1/1.3=22/1.3 ;......
Chào bạn!
Bạn phân tích cái đầu thành pt : 4x2 - 4xy +y2 = (2x-y)2=9Từ đó bạn tính được: 2x-y=3 hoặc 2x-y= -3 (1)(1) suy ra được 2x = 3+y hoặc 2x=y-3Sau đó bạn nhân 2 vế của pt 2 cho 2 ta sẽ được pt mới <=> 2x+6y = 10 (2)Tới đây bạn thay 2x vào pt (2) ( lưu ý là xét 2 TH)Cuối cùng bạn chỉ cần tìm được y sau đó suy ra x nữa là xog . <3
\(a.\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\)\(0\)
\(\Leftrightarrow\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2.\left(x+1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow2x^2-6=0\)
\(\Leftrightarrow2x^2=6\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\sqrt{3}\)
\(b.2x^3-5x^2+3x=0\)
\(\Leftrightarrow x.\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x.\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x.\left[2x.\left(x-1\right)-3.\left(x-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x-1\right).\left(2x-3\right)=0\)
Đến đây tự làm nhé có việc bận
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Để phương trình có vô số nghiệm thì m=3