K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

câu a sai đề bài nhé bn

27 tháng 2 2022

mik chưa học nha

20 tháng 7 2017

M là trug điểm BC

MN //AB                  

nên MN là đường trung bình của AB , AB=2MN=30 

- Áp dụng hệ thức lương vào tam giác vuông MNC (vuông tại N)

   ta có \(\frac{1}{NK^2}=\frac{1}{NM^2}+\frac{1}{NC^2}\)

=> ta tìm dc NC   mà AC=2NC

vậy ta biết dc 2 cạnh AB và AC

diện h tam giác \(=\frac{1}{2}.AB.AC\)

26 tháng 2 2017

M P N K 15 12 16

Xét tam giác MNK có góc MKN = 90 o

=> MN2= MK2+ NK2 ( theo đ/l py ta go )

=> 152=122 + NK2

=> NK2= 225-144

=> NK2= 81

=> NK= 9 ( cm )

Ta có NK+PK= PN

=> PN= 9+ 16

=> PN= 25 ( cm)

Xét tam giác MNP có góc PMN = 90o

=> PN2= MN2+ MP2 ( THeo đ/l pytago)

=> MP2= PN2-MN2

=> MP2=625 - 225

=> MP2= 400

=> MP=20 (cm)

26 tháng 2 2017

MP=20cm, NK=9

6 tháng 10 2021

Sửa đề: Đường cao MH

Áp dụng HTL:

\(MH^2=NH.HP\)

\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)

\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

12 tháng 7 2018

a) MH là đường trung trực của AB , I thuộc MH => IN = IK

=> tam giác INK cân tại I => Góc INH = góc IKH

Mà góc MNK = góc MKN vì tam giác MNK cân tại M

=> Góc BNA = góc AKB . Dễ dàng suy ra tam giác AIN = tam giác BIK (g.c.g)

=> AN = BK . Đến đây áp dụng định lí ta lét đảo được AB // NK => ABKN là hình thang có hai góc kề 1 đáy bằng nhau => ABKN là hình thang cân

b) MK là đường trung trực của NK vì tam giác MNK cân, có đường phân giác MI

Vì AB // NK nên tam giác MAB cân tại M => có điều tương tự.

Chúc bạn học tốt !

12 tháng 7 2018

M N K H A B I

Xét tam giác \(\Delta ANK\)\(\Delta BNK\)

            \(\widehat{ANK}=\widehat{BNK}\)

              \(\widehat{AKN}=\widehat{BNK}\)

              KN là cạnh cụng 

=> 2 tam giác = nhau ( g.c.g )

=> BN =AK ( 2 cạnh tương ứng )

=> ABKN là hình thang cân ( 2 dường chéo = nhau )

b)  Ta có : ΔMKN là tam giác cân
=> MH là đường phân giác cũng là đường trung trực 
Mà BA// KN ( hình thang ) 
    BK = AN => MB = MA 
 => MBA là tam giác cân ( đồng dạng với ΔMKN)
=> MI là trung trực chung của AB và KN ( dpcm)