Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
=> MN//AC
Mà AC⊥AB(tam giác ABC vuông tại A)
=> MN⊥AB(từ vuông góc đến song song)
b) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(pytago\right)\)
\(\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\Rightarrow AC=5\left(cm\right)\)
Ta có: MN là đường trung bình tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
\(a,\) \(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow\) MN là đường trung bình tam giác ABC
\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)
\(b,MN=\dfrac{1}{2}AC\left(tính.chất.đtb\right)\)
Mà \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-12^2}=5\left(cm\right)\left(pytago\right)\)
\(\Rightarrow MN=\dfrac{5}{2}\left(cm\right)\)
\(c,\left\{{}\begin{matrix}AM=MB\\AP=PC\end{matrix}\right.\Rightarrow\) MP là đường trung bình tam giác ABC
\(\Rightarrow MP=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)
\(\left\{{}\begin{matrix}AP=PC\\BN=NC\end{matrix}\right.\Rightarrow\) NP là đường trung bình tam giác ABC
\(\Rightarrow NP=\dfrac{1}{2}AB=6\left(cm\right)\)
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
hay MN\(\perp\)AB
b: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=5(cm)
\(\Leftrightarrow MN=2.5\left(cm\right)\)
Xét ΔBAC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=16(cm)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
mà \(\widehat{A}=90^0\)
nên AMNC là hình thang vuông
A B C M N H
a) Ta có: góc MNC = góc BAC = 900
=> MN // BC (2 góc đồng vị bằng nhau) (đpcm)
b) Ta có: AC // HM (gt)
Và AC vuông góc với AB (góc BAC = 900)
=> MH vuông góc với AB (đpcm)