Phantich da thuc thanh nhan tu
A.(x2-2x)(x2-2x-1) -6
B.x3-2x-1
C.x5-25x2+20x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\left(x^2+2x+1\right)\left(x+1\right)\)
\(=x^2.x+2x.x+1.x+x^2.1+2x.1+1.1\)
\(=x^3+2x^2+x+x^2+2x+1\)
\(=x^3+3x^2+3x+1\)
b) \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)
\(=x^3.5-x^2.5+2x.5-1.5+x^3.\left(-x\right)-x^2.\left(-x\right)+2x.\left(-x\right)-1.\left(-x\right)\)
\(=5x^3-5x^2+10x-5-x^4+x^3-2x^2+x\)
\(=6x^3-7x^2+11x-5-x^4\)
c) \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)
\(=x.x^3-5.x^3+x.\left(-x^2\right)-5.\left(-x^2\right)+x.2x-5.2x+x.\left(-1\right)-5.\left(-1\right)\)
\(=x^4-5x^3-x^3+5x^2+2x^2-10x-x+5\)
\(=x^4-6x^3+7x^2-11x+5\)
Chúc bạn học tốt!!!
lớp 8 Phạm Hoàng Giang không chơi kiểu lớp 7
đúng làm 8 mà làm
\(A=\left(x^2+2x+1\right)\left(x+1\right)=\left(x+1\right)^2\left(x+1\right)=\left(x+1\right)^3\)
\(A=x^3+3x^2+3x+1\)
\(=\left(x-y\right)^2-2\left(x-y\right)=\left(x-y\right)\left(x-y-2\right)\)
Giải:
a) \(3x^2y-6xy^2\)
\(=3xy\left(x-2y\right)\)
Vậy ...
b) \(\left(2x-a\right)x^2-\left(2x-a\right)y\)
\(=\left(2x-a\right)\left(x^2-y\right)\)
\(=\left(2x-a\right)\left(x-\sqrt{y}\right)\left(x+\sqrt{y}\right)\)
Vậy ...
c) \(25a^2-c^2\)
\(=\left(5a-c\right)\left(5a+c\right)\)
Vậy ...
d) \(4-36x+81x^2\)
\(=2^2-2.2.9x+\left(9x\right)^2\)
\(=\left(2-9x\right)^2\)
Vậy ...
e) \(\left(x+7\right)2-\left(2x-9\right)2\)
\(=2\left[\left(x+7\right)-\left(2x-9\right)\right]\)
\(=2\left(x+7-2x+9\right)\)
\(=2\left(16-x\right)\)
Vậy ...
f) \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-4\right)\left(x-2\right)\)
Vậy ...
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
d) Ta có: \(x^2+12x+39\)
\(=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-6
e) Ta có: \(-x^2-12x\)
\(=-\left(x^2+12x+36-36\right)\)
\(=-\left(x+6\right)^2+36\le36\forall x\)
Dấu '=' xảy ra khi x=-6
f) Ta có: \(4x-x^2+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=1
( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )
a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)
\(=\left(5x-2\right)^2+3\)
Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)
Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)
b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)
Vậy Min = 1 <=> x = 1/3
c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Vậy Max = -1 <=> x = 1
d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)
Vậy Min = 3 <=> x = - 6
e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)
Vậy Max = 36 <=> x = -6 .
f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Vậy Max = 5 <=> x = 2
\(x^6-2x^3+1=\left(x^3-1\right)^2\)
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
a) x6 - 2x3 + 1
= (x3)2 - 2x3 + 1
= ( x3 - 1)2
b) x4 + 2x2 + 1
= ( x2)2 + 2x2 + 1
= ( x2 + 1)2