Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x2-2xy+y2-2x+2y
=(x2-2xy+y2-2x+2y+1)-1
=(x-y-1)2-1
=(x-y-2)(x-y)
b)x3-49x
=x(x2-72)
=x(x+7)(x-7)
c)x2-y2+6x+9
=(x2+6x+9)-y2
=(x+3)2-y2
=(x-y+3)(x+y+3)
d)x2-6x+5
=x2-5x-x+5
=x(x-5)-(x-5)
=(x-1)(x-5)
Bài này ko thể phân tích theo kiểu lớp 8 được (chưa học căn thức)
\(2x^2-6x+1=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{3\sqrt{2}}{2}+\left(\frac{3\sqrt{2}}{2}\right)^2-\frac{7}{2}\)
\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\left(\frac{\sqrt{14}}{2}\right)^2\)
\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}+\frac{\sqrt{14}}{2}\right)\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}-\frac{\sqrt{14}}{2}\right)\)
\(=\left(\sqrt{2}x+\frac{\sqrt{14}-3\sqrt{2}}{2}\right)\left(\sqrt{2}x-\frac{\sqrt{14}+3\sqrt{2}}{2}\right)\)
\(2x^2-6x+1=2\left(x^2-3x+\frac{9}{4}-\frac{7}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{7}}{2}\right)^2\right]=2\left(x-\frac{3}{2}-\frac{\sqrt{7}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{7}}{2}\right)\)
\(=2\left(x-\frac{3+\sqrt{7}}{2}\right)\left(x-\frac{3-\sqrt{7}}{2}\right)\)
=x^3-2x^2+2x-4-9
=(x-2)(x^2+2)-9
\(=\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}-3\right)\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}+3\right)\)
\(2x^2-5x-7\)
\(=2x^2+2x-7x-7\)
\(=2x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(2x-7\right)\left(x+1\right)\)
Vậy ...
$ 2x^3 - x^2 + 5x + 3 \\ = 2x^3 + x^2 - 2x^2 - x + 6x + 3 \\ = x^2(2x + 1) - x(2x + 1) + 3(2x + 1) \\ = (2x + 1)(x^2 - x + 3) $
\(2x^3-x^2+5x+3\)
= \(2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
Vì \(x^2-x+3=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}+3>0\)
Nên
\(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)=\left(2x+1\right)\left(2x+1+2\right)=\left(2x+1\right)\left(2x+3\right)\)
\(\)
\(=\left(x-y\right)^2-2\left(x-y\right)=\left(x-y\right)\left(x-y-2\right)\)