Cho tam gác ABC có BC=10m; AB=8m và AC=6m. Kẻ phân giác CH của góc C, kẻ BE vuông vs CH cắt CA tại D (D thuộc AC), (E thuộc DB).
a) Chứng minh tam giác ABC là tam giác vuông
b) Chứng minh: DH vuông vs BC
c) Gọi M là giao của DH và BC. Chứng minh: AM song song BD
d) So sánh góc AEC và MEC
tự kẻ hình nha
a) ta có AB^2+AC^2=8^2+6^64+36=100
BC^2=10^2=100
=> BC^2=AC^2+AB^2
=> tam giác ABC vuông tại A
b) vì CH, AB là đường cao mà AB, CH, DH giao nhau tại H
=> DH vuông góc với BC ( 3 đường cao cùng đi qua một điểm)
c) phải là AM//BD nha
xét tam giác CEB và tam giác CED có
CE chung
CEB=CED(=90 độ)
C1=C2(gt)
=> tam giác CEB= tam giác CED(gcg)
=> BC=DC( hai cạnh tương ứng)=> BCD cân C=> CBD=CDB=180-BCD/2
xét tam giác ABC và tam giác MDC có
BAC=DMC(=90 độ)
BC=DC(cmt)
góc C chung
=> tam giác ABC = tam giác MDC(ch-gnh)
=> MA=MC( hai cạnh tương ứng)=> tam giác MAC cân C=> MAC=AMC=180-ACM/2
=> MAC=BDC mà MAC đồng vị với BDC=> AM//BD
d) xét tam giác CME và tam giác CAE có
CM=AM(cmt)
C1=C2(gt)
CE chung
=> tam giác CME= tam giác CAE( cgc)
=> AEC=MEC( hai góc tương ứng)