Biểu thức \(B=2015+\left|x+4\right|\)dat giá tri nho nhat khi x = ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Biểu thức này đạt giá trị nhỏ nhất là -1 }\Leftrightarrow\text{x = -5}\)
Vì \(\left(-x-5\right)^4\ge0\Rightarrow\left(-x-5\right)^4-1\ge-1\)
VẬy GTNN của a là -1 khi -x -5 = 0 => -x = 5 => x= -5
tim gia tri nho nhat cua bieu thuc : \(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014
\(A=x^2-8x+2015\)
\(A=x^2-8x+16+1999\)
\(A=\left(x-4\right)^2+1999\)
..... tự làm nốt nhé.
\(A=x^2-8x+2015\)
\(\Rightarrow A=x^2-8x+16+1999\)
\(\Rightarrow A=\left(x-4\right)^2+1999\)
\(\Rightarrow A\ge1999\)
Dấu "=" xảy ra:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=0+4=4\)
Vậy A nhỏ nhất khi A = 1999 tại x = 4
Ta có:
\(\left(x+\dfrac{1}{2}\right)^2\)+1\(\ge\)1
mà \(\left(x+\dfrac{1}{2}\right)^2\)\(\ge\)0
Dấu ''='' xảy ra khi:
\(\left(x+\dfrac{1}{2}\right)^2\)=0
=>x+\(\dfrac{1}{2}\)=0
=>x=\(\dfrac{-1}{2}\)
Vậy GTNN của \(\left(x+\dfrac{1}{2}\right)^2\)+1 là 1 khi x=\(\dfrac{-1}{2}\)
Tick mình đi Nga, năn nỉ đó!
-4 nhé! Tick ủng hộ mình nha!