K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Đặt \(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)

Đặt \(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}\)

Ta có: \(\frac{1}{5^2}< \frac{1}{4.5}\)

           \(\frac{1}{6^2}< \frac{1}{5.6}\)

            ....................

          \(\frac{1}{64^2}< \frac{1}{63.64}\)

\(\Rightarrow B< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)

\(\Rightarrow B< \frac{1}{4}-\frac{1}{64}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{4^2}+\frac{1}{4}\)

\(\Rightarrow A< \frac{5}{16}\)

11 tháng 6 2019

Ta có S =\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)

\(\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{64.64}\)

\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)

\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{63}-\frac{1}{64}\)

\(\frac{1}{3}-\frac{1}{64}\)

\(\frac{61}{192}\)\(\frac{60}{192}=\frac{5}{16}\)

S <  \(\frac{61}{192}>\frac{5}{16}\)

=> sai đề 

9 tháng 3 2017

a) \(\frac{1}{9}\)

b) -1100

13 tháng 5 2020

a) \(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)

\(4A=5A-A=\frac{1}{5}-\frac{1}{5^{2019}}\)

\(A=\frac{1}{20}-\frac{1}{4.5^{2019}}< \frac{1}{20}< \frac{1}{2}\)

b)  Đề có sai không mà đằng cuối lại là \(\frac{1}{4^2}\)lặp lại lần nữa.
c) \(C=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(3C=2C+C=1-\frac{1}{64}< 1\)

\(C< \frac{1}{3}\)

d) Xem lại đề nữa đi e, nếu trừ hai vế cho \(\frac{1}{3}\)thì vế trái > 0 > vế phải rồi
e)  \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(10 số hạng)
                                                    \(=\frac{10}{50}=\frac{1}{5}\)

Tương tự: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{7}\)

\(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}>\frac{1}{8}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

10 tháng 6 2018

\(A=2\frac{1}{2}\)

18 tháng 5 2019

VT\(< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{64}=\frac{15}{64}< \frac{5}{16}\)

Vậy ta có đpcm.

12 tháng 9 2016

giúp với ạ

13 tháng 9 2016

giải dc nhưng mà hoi lâu