K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 6 2020

Không phải, bạn chưa học cách viết pttt tại 1 điểm bằng phương pháp "tách đôi tọa độ" à?

Tiếp tuyến của đường tròn (C) có pt: \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

tại điểm M nằm trên đường tròn \(M\left(x_M;y_M\right)\) luôn có dạng:

\(\left(x-a\right)\left(x_M-a\right)+\left(x-b\right)\left(x_M-b\right)=R^2\)

NV
16 tháng 6 2020

Phương trình (C): \(\left(x-3\right)^2+\left(y+1\right)^2=4\)

Đường tròn (C) tâm \(I\left(3;-1\right)\) bán kính \(R=2\)

\(\overrightarrow{AI}=\left(2;-4\right)\Rightarrow AI=2\sqrt{5}\)

Phương trình tiếp tuyến qua \(T_1\) có dạng:

\(\left(x-3\right)\left(x_{T1}-3\right)+\left(y+1\right)\left(y_{T1}+1\right)=4\)

Do tiếp tuyến qua A nên:

\(-2\left(x_{T1}-3\right)+4\left(y_{T1}+1\right)=4\Leftrightarrow x_{T1}-2y_{T1}-3=0\) (1)

Tiếp tuyến qua \(T_2\): \(\left(x-3\right)\left(x_{T2}-3\right)+\left(y+1\right)\left(y_{T2}+1\right)=4\)

Do tiếp tuyến qua A nên:

\(-2\left(x_{T2}-3\right)+4\left(y_{T2}+1\right)=4\Leftrightarrow x_{T2}-2y_{T2}-3=0\) (2)

Từ (1); (2) \(\Rightarrow T_1;T_2\) thuộc đường thẳng có pt: \(x-2y-3=0\)

Gọi H là trung điểm \(T_1T_2\Rightarrow\left\{{}\begin{matrix}IH\perp T_1T_2\\HT_1=HT_2\end{matrix}\right.\)

\(IH=d\left(I;T_1T_2\right)=\frac{\left|3-2\left(-1\right)-3\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{2}{\sqrt{5}}\)

\(\Rightarrow HT_1=\sqrt{R^2-IH^2}=\frac{3\sqrt{10}}{5}\Rightarrow T_1T_2=\frac{6\sqrt{10}}{5}\)

\(AH=AI-IH=\frac{8\sqrt{5}}{5}\)

\(S_{AT_1T_2}=\frac{1}{2}AH.T_1T_2=\frac{24\sqrt{2}}{5}\)

16 tháng 3 2021

PT đường tròn (x - 3)2 + (y + 1)2 = 4

Vậy đường tròn (C) có tâm I (3 ; -1) và bán kính bằng 2

 \(\overrightarrow{IA}=\left(-2;0\right)\)⇒ IA = 2 ⇒ A thuộc đường tròn

\(\overrightarrow{IB}=\left(-2;4\right)\) ⇒ IB > 2 ⇒ B nằm ngoài đường tròn

16 tháng 3 2021

CHI THAY cac toa do diem vao la xong

 

20 tháng 5 2017

a) \(\left(C\right)\) có tâm \(I\left(3;-1\right)\) và có bán kính \(R=2\), ta có :

\(IA=\sqrt{\left(3-1\right)^2+\left(-1-3\right)^2}=2\sqrt{5}\)

\(IA>R\), vậy A nằm ngoài (C)

b) \(\Delta_1:3x+4y-15=0;\Delta_2:x-1=0\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường tròn \({(x + 1)^2} + {(y - 5)^2} = 9\) có tâm \(I\left( { - 1;5} \right)\) và \(R = 3\)

b) Đường tròn \({x^2} + {y^2}-6x - 2y-{\rm{1}}5 = 0\) có tâm \(I\left( {3;1} \right)\) và \(R = \sqrt {{3^2} + {1^2} + 15}  = 5\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).

b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {11} \).

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)

Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4  = 2\)

b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b =  - 2,c = 2\)

Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b =  - 1,c = 7\)

Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 =  - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.