K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

Ta có \(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}a=2\cdot2=4\\b=2\cdot3=6\end{cases}}\)

vậy (a;b)=(4,6)

3 tháng 8 2015

b) 3a = 2b; 7b = 5c

=> a/2 = b/3; b/5 = c/7

=> a/10 = b/15 = c/21

Áp dụng tính chất dãy tỉ số bằng nhau, có:

 \(\frac{a}{10}=\frac{b}{15}=\frac{c}{21}=\frac{a-b+c}{10-15+21}=\frac{32}{16}=2\)

suy ra; a/10 = 2    => a = 10 * 2 = 20

         b/15 = 2       => b = 15 * 2 = 30

       c/21 = 2         => c = 21 * 2 = 42

bài 1/ 

a) ta có: \(A=\frac{15}{x-1}\)

Để A là phân số \(\Rightarrow x-1\ne0\)

                          \(\Rightarrow x\ne1\)

b) Nếu x = 7

\(\Rightarrow A=\frac{15}{7-1}\)

\(\Rightarrow A=\frac{15}{6}\)

Nếu x = -3

\(\Rightarrow A=\frac{15}{-3-1}\)

\(\Rightarrow A=\frac{15}{-4}\)

Nếu x = 4

\(\Rightarrow A=\frac{15}{4-1}\)

\(\Rightarrow A=\frac{15}{3}=5\)

c) Ta có: \(B=5\)

\(\Leftrightarrow A=\frac{15}{x-1}=5\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

Bài 2/

a) \(\frac{x}{3}=\frac{2}{6}\)

\(\Leftrightarrow6x=6\)

\(\Leftrightarrow x=1\)

b) \(-\frac{x}{14}=\frac{10}{-7}\)

\(\Leftrightarrow7x=140\)

\(\Leftrightarrow x=20\)

hok tốt!!

26 tháng 10 2015

1/ \(\Rightarrow\left(\frac{1}{3}\right)^x\left[1+\left(\frac{1}{3}\right)^2\right]=\frac{10}{27}\)

\(\Rightarrow\left(\frac{1}{3}\right)^x.\frac{10}{9}=\frac{10}{27}\)

\(\Rightarrow\left(\frac{1}{3}\right)^x=\frac{1}{3}\Rightarrow\left(\frac{1}{3}\right)^x=\left(\frac{1}{3}\right)^1\Rightarrow x=1\)

2/ Có: 2a + 7b = 28

=> 2a + 2a = 28 (vì 2a = 7b)

=> 4a = 28

=> a = 7

Thay a = 7 vào 2a = 7b ta đc:

2.7 = 7.b

=> b = 2

Vậy a = 7 ; b = 2

 

 

27 tháng 9 2016

Ko hieu đề 

18 tháng 3 2020

Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0