Tìm giá trị nhỏ nhất của biểu thức sau
A=\(\frac{\left|x-2013\right|+2014}{\left|x-2013\right|+2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)
\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)
\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)
\(P\left(x\right)=\frac{2012x+2013\sqrt{1-x^2}+2014}{\sqrt{1-x^2}}=\frac{2012x+2014}{\sqrt{1-x^2}}+\frac{2013\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\frac{2012x+2014}{\sqrt{1-x^2}}+2013=2012+\frac{2012\left(1+x\right)+1-x}{\sqrt{1-x^2}}\)
Áp dụng BĐT AM-GM ta có:
\(P\left(x\right)\ge2012+\frac{2\sqrt{2012\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}=2012+2\sqrt{2012}\)
=\(2013\) \(+\frac{2014+2012x}{\sqrt{1-x^2}}\) =\(\frac{2013\left(1+x\right)+1-x}{\sqrt{1-x^2}}\) \(\ge2013+\frac{2\sqrt{2013\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}=2013+2\sqrt{2013}\)
dau = xay ra khi \(2013\left(1+x\right)=1-x\)
\(\Leftrightarrow x=-\frac{1001}{1002}\)
min p(x) =\(2013+2\sqrt{2013}\Leftrightarrow x=-\frac{1001}{1002}\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a;b\) Ta có :
\(\left|x-2013\right|+\left|x-2015\right|=\left|2013-x\right|+\left|x-2015\right|\ge\left|2013-x+x-2015\right|=2\)
\(\Rightarrow A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\ge2+\left|x-2014\right|\ge2\)có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2013-x\right)\left(x-2015\right)\ge0\\\left|x-2014\right|=0\end{cases}\Rightarrow x=2014\left(TM\right)}\)
Vậy GTNN của A là 2 tại x = 2014
áp dụng bđt về GTTĐ /x-2013/+/x-2015/=/x-2013/+/2015-x/\(\ge\)/x-2013+2015-x/=2
mà /x-2014/\(\ge0\)
nên A\(\ge2\)
dấu = xảy ra <=>x=2014
\(A=\left|x-2013\right|+\left|2014-x\right|+\left|x-2015\right|\)
\(\Rightarrow A=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\Rightarrow A\ge\left|x-2013+0+2015-x\right|\)
\(\Rightarrow A\ge2.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x=0\\x-2015\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\Rightarrow x=2014.\)
Vậy \(MIN_A=2\) khi \(x=2014.\)
Chúc bạn học tốt!
\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)
\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)
\(\Rightarrow x=2013;y=2014;z=2015\)
Đến đây bạn tự thay vào rồi tính nhé!
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)
\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)
Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)
\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)
Vậy \(A_{min}=2\) tại \(x=2014\)