K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

Làm gì có ở câu hỏi tương tự 

19 tháng 12 2015

??? tớchỉ mới học lớp 6 thoi nên ko hiểu

18 tháng 10 2017

Thay ab+bc+ac = 1 vào Q

18 tháng 10 2017

Thay ab+bc+ac = 1 và Q ta được :

\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương  của một số hữu tỉ (đpcm)

30 tháng 7 2018

Chúc bạn có 1 ngày vui vẻ!!!

29 tháng 12 2018

\(\frac{ab+2}{a^0}\)biểu thức hữu tỉ :)))

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này. 
AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.

25 tháng 2 2022

\(a^3+b^3=4ab\)

\(\Rightarrow a^3=4ab-b^3\)

\(\Rightarrow a=\dfrac{4ab-b^3}{a^2}\)

\(4-ab=4-\dfrac{4ab-b^3}{a^2}.b=4-\dfrac{4ab^2-b^4}{a^2}=\dfrac{4a^2-4ab^2+b^4}{a^2}=\dfrac{\left(2a-b^2\right)^2}{a^2}=\left(\dfrac{2a-b^2}{a}\right)^2\)

20 tháng 12 2014

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm