A=x^2+3/x-2 tim GT nguyen cua x de A nhan GT nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)
b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)
Ta có : y = \(\dfrac{5x+9}{x+3}\)
Để y nhận giá trị nguyên thì: 5x + 9 \(⋮\) x + 3
=> 5. ( x + 3 ) + 9 - 15 \(⋮\) x + 3
=> 5. ( x + 3 ) - 6 \(⋮\) x + 3
=> 6 \(⋮\) x + 3 ( vì 5. ( x + 3 ) \(⋮\) x + 3 )
=> x + 3 \(\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
=> \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)
Vậy : \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\) thì y nhận giá trị nguyên.
Bài 2:
a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)
\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{2}{2x+1}\)
b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)
c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)
+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)
+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)
Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)
\(\Rightarrow\)(x + 1) . (x - 2)\(⋮\)(x + 6)
\(\Rightarrow\)(x + 1) . (x -2)\(⋮\)x + 6
(x - 2) . (x+1) \(⋮\)x+ 6
(x - 2) . (x + 6 - 5)\(⋮\)x+ 6
x + 6 \(⋮\)x + 6
5\(⋮\)x + 6
( x -2 ) \(⋮\)6
6+x\(\in\)Ư (5) = ( 1 , 5) Vì biểu thức trên dương nên 6 + x cũng dương.
x + 6 = 1 x + 6 =5
x=-5 x=-1
Vậy x\(\in\)(-5, -1)