CHo 2 đa thức P(x)=x\(^2\)-2ax+a\(^2\)và Q(x)=x\(^2\)+(3a+1).x+a\(^2\)
Tìm a sao cho P(x)=Q(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(Q_{(2)} + Q_{(-1)} = 0\)
\(\Rightarrow 2^2 - 2 . a . 2 + ( -1 )^2 - 2 . a . ( -1 ) = 0\)
\(\Rightarrow 4 - 4a + 1 + 2a=0\)
\(\Rightarrow ( 4 + 1 ) + ( -4a + 2a ) = 0\)
\(\Rightarrow 5 - 2a = 0\)
\(\Rightarrow a = \dfrac{5}{2}\)
Vậy \(a = \dfrac{5}{2}\)
A(x)=x^2-2ax+a^2
Q(x)=x^2+(3a+1)x+a^2
A(1)=Q(3)
=>1-2a+a^2=3^2+3(3a+1)+a^2
=>1-2a=9+9a+3
=>9a+12=-2a+1
=>11a=-11
=>a=-1
Để P(x) = Q(x)
Thì x2 - 2ax + a2 = x2 + (3a + 1)x + a2
=> x2 - 2ax + a2 = x2 + 3ax + x + a2
=> (x2 - 2ax + a2) - (x2 + 3ax + x + a2) = 0
=> x2 - 2ax + a2 - x2 + 3ax - x - a2 = 0
=> (x2 - x2) + (-2ax + 3ax) + (a2 - a2) - x = 0
=> ax - x = 0
=> x(a - 1) = 0
Vậy a = 1
Để \(P\left(x\right)=Q\left(x\right)\)thì \(x^2-2ax+a^2=x^2+\left(3a+1\right).x+a^2\)
\(\Leftrightarrow-2ax=\left(3a+1\right).x\)\(\Leftrightarrow\left(3a+1\right).x+2ax=0\)
\(\Leftrightarrow\left(3a+1+2a\right).x=0\)\(\Leftrightarrow\left(5a+1\right).x=0\)
\(\Leftrightarrow5a+1=0\)\(\Leftrightarrow5a=-1\)\(\Leftrightarrow a=\frac{-1}{5}\)
Vậy \(a=\frac{-1}{5}\)