K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi môn toán 8 học kì 2Câu 1 Giải các phương trình sau:a) x-2=0, b) (x+5)(2x-7)=0. =c) . 5x/x+2 =4Câu 2. a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a )2x-6>_(hoặc bằng)=0. b) Cho a<b. Chứng minh: -3a+7> -3b+7Câu 3 (1,0 điểm). Giải bài toán bằng cách lập phương trình:Một người đi ôtô từ huyện Cao Lãnh đến huyện Thanh Bình với vận tốc 40 km/h. Sau khi đi đến huyện Thanh Bình người đó giải...
Đọc tiếp

Đề thi môn toán 8 học kì 2

Câu 1 Giải các phương trình sau:

a) x-2=0, b) (x+5)(2x-7)=0. =c) . 5x/x+2 =4

Câu 2. a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a )2x-6>_(hoặc bằng)=0. 

b) Cho a<b. Chứng minh

: -3a+7> -3b+7

Câu 3 (1,0 điểm). Giải bài toán bằng cách lập phương trình:

Một người đi ôtô từ huyện Cao Lãnh đến huyện Thanh Bình với vận tốc 40 km/h. Sau khi đi đến huyện Thanh Bình người đó giải quyết công việc hết 30 phút .rồi quay về huyện Cao Lãnh với vận tốc 50 km/h. Biết thời gian cả đi và về hết 2 giờ 18 phút (kể cả thời gian giải quyết công việc). Tính quãngđường từ huyện Cao Lãnh đến huyện Thanh Bình.

Câu 4 (1,0 điểm). Một container chứa hàng có kích thước như sau: dài 6m, rộng 2,4m; cao 2,6m. Tínhthể tích của thùng container.

Câu 5 (3,0 điểm). Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Kẻ AH vuông góc với BC tại H

a) Chứng minh: tamgiácHBA đồng dạng với tamgiácABC.

b) Chứng minh: AB2 =BH.BC

c) Tính độ dài cạnh BC, BH.

Phân giác của góc ACB cắt AH tại E và cắt AB tại D. Tính tỉ số diện tích của tam giác ACD và tam giácHCE.

Giúp mình với mn ơii .mai mình nộp r

GIUP VOI MOI NGUOI OI .CUU EM VOIIIIII !!!!!!!!!!

 

1
6 tháng 5 2021

câu 1 

a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)

 

6 tháng 5 2021

c) \(\dfrac{5x}{x+2}\)=4 Đk x\(\ne\)-2

=> 5x=4(x+2)

=>5x-4x=8

=>x=8(tmđk)

 

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

7 tháng 6 2018

Đáp án A.

+ Điều kiện: x > 0

Bất phương trình

=> Bất phương trình  x ≤ 2 3 x + 1 ⇔ f ( x ) ≤ 0 ⇔ 0 < x ≤ 2   ( 2 ) .

Từ (1) và (2) => Tập nghiệm của bất phương trình là

S =  ( 0 ; 2 ] ∪ [ 4 ; + ∞ ) .

Vậy có 2016 nghiệm nguyên thỏa mãn.

31 tháng 12 2018

11 tháng 5 2017

Đáp án A.

+ Điều kiện: x > 0

+ Đặt log 1 2 x = t . Bất phương trình ⇔ x + 1 t 2 + 2 x + 5 t + 6 ≥ 0  

Δ = 2 x + 5 2 − 4 x + 1 + 6 = 2 x − 1 2  

Bất phương trình

⇔ log 1 2 x ≤ − 2 log 1 2 x ≥ − 3 x + 1 ⇔ x ≥ 1 2 − 2 0 < c ≤ 1 2 − 3 x + 1 ⇔ x ≥ 4  (1) 0 < x ≤ 2 3 x + 1  

+ Xét hàm số f x = x − 2 3 x + 1  có f ' x = 1 − 2 3 x + 1 . ln 2. − 3 x + 1 2 > 0   ∀ x > 0  

Hàm số đồng biến trên 0 ; + ∞  

+ Có f 2 = 0 ⇒ f x = 0  coa nghiệm là x=2 

Bảng biến thiên:

Bất phương trình x ≤ 2 3 x + 1 ⇔ f x ≤ 0 ⇔ 0 < x ≤ 2   ( 2 )  

Từ (1) và (2) => Tập nghiệm của bất phương trình là S = 0 ; 2 ∪ 4 ; + ∞  

 

Vậy có 2016 nghiệm nguyên thỏa mãn.

 

20 tháng 9 2020

1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow-7x+3=-4x-15\)

\(\Leftrightarrow-7x+4x=-15-3\)

\(\Leftrightarrow-3x=-18\)

\(\Leftrightarrow x=6\)( tmđk )

Vậy x = 6 là nghiệm của phương trình

2) 2x + 3 < 6 - ( 3 - 4x )

<=> 2x + 3 < 6 - 3 + 4x

<=> 2x - 4x < 6 - 3 - 3

<=> -2x < 0

<=> x > 0

Vậy nghiệm của bất phương trình là x > 0