K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

25 tháng 7 2019

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

22 tháng 2 2021

 \(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

Vì xyz=1 nên \(x\ne0;y\ne0;z\ne0\)

Ta có \(\frac{1}{1+x+xy}=\frac{z}{\left(1+y+yz\right)xz}=\frac{xz}{z+xz+1}\)

Tương tự \(\frac{1}{1+y+yz}=\frac{xz}{\left(1+y+yz\right)xz}=\frac{xz}{xz+z+1}\)

Khi đó \(M=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{1+z+xz}=\frac{z+xz+1}{z+zx+1}=1\)

13 tháng 5 2017

Sửa đề : Cho 3 số x,y,z thỏa mãn xyz=1

Tính M =\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}\)\(\frac{1}{1+x+xz}\)

===============================Bài làm ========================

Ta có M = \(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}\)\(\frac{1}{1+x+xz}\)

=\(\frac{z}{z\left(1+x+xy\right)}\)\(\frac{xz}{xz\left(1+y+yz\right)}\)\(\frac{1}{1+x+xz}\)

=\(\frac{z}{z+xz+1}\)\(\frac{xz}{zx+z+1}\)\(\frac{1}{1+x+xz}\)

=\(\frac{z+xz+1}{z+xz+1}=1\)

Vậy M=1

14 tháng 5 2017

Ta có: xyz=1

=>x=1;y=1;z=1

=>M=1/(1+x+xy)+1/(1+y+yz)+1/(1+z+zx)

=1/(1+1+1.1)+1/(1+1+1.1)+1/(1+1+1.1)

=1

4 tháng 12 2019

Áp dụng bất đẳng thức Cauchy 

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)

\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)

Áp dụng BĐT Cauchy - Schwarz :

\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

7 tháng 5 2020

Áp dụng BĐT Cauchy schwarz ta có:

\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)

\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)

Đẳng thức xảy ra tại x=y=z=1/3

11 tháng 9 2021

Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)

Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)

=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)

29 tháng 12 2019

dễ mà mình chưa học chúc bạn học tốt

20 tháng 2 2018

đáp án

Không có văn bản thay thế tự động nào.

8 tháng 1 2021

chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c

đến đây thì tự làm tiếp đi