chứng minh rằng
\(x^3+2012x\)\(⋮\)\(48\)với mọi \(x\)\(⋮\)\(2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)
\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)
\(=\left(x^2+10x+20\right)^2\)
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)
n^2(n-3)-(n-3)=(n-3)(n^2-1)=(n-3)(n-1)(n+1)
Có: (n-1)(n+1) là tích 2 số chắn liên tiếp=> (n-1)(n+1) chia hết cho 8
n lẻ=> n-3 chẵn=> n-3 chia hết cho 2
=> (n-3)(n-1)(n+1) chia hết cho 2*8=16(1)
Mặt khác n^3-3n^2-n+3 = n(n^2-1)-3(n^2-1)=n(n-1)(n+1)-3(n^2-1)
thấy n(n-1)(n+1) là tích 3 stn liên tiếp => n(n-1)(n+1) chia hết cho 3
lại có: 3(n^2-1) chia hết cho 3
=> n^3-3n^2-n+3 chia hết cho 3(2)
(1)(2)=>n^3-3n^2-n+3 chia hết cho 48
n^3-3n^2-n+3=(n^3-n)-3(n^2-1)=n(n^2-1)-3(n^2-1)=(n-3)(n-1)(n+1)
n lẻ nên có dạng n=2k+1 (k \(\in N\)) thay vào trên ta được
(2k-2)2k(2k+2)=8(k-1)k(k+1) chia hết cho 48 nếu (k-10k(k+10 chia hết cho 6
Thật vậy
(k-1)k(K+1) là 3 số liên tiếp nên luôn tồn tại một số chia hết cho 3
(k-1)k(k+1) cũng luôn tồn tại ít nhất một số chia hết cho 2
vậy (k-1)k(k+1) chia hết cho 6 (chứng minh xong)
\(a^3+6a^2+8=a\left(a^2+6a+9-1\right)=\)
\(=a\left[\left(a+3\right)^2-1\right]=a\left(a+3-1\right)\left(a+3+1\right)=\)
\(=a\left(a+2\right)\left(a+4\right)\)
Đây là tích của 3 số chẵn liên tiếp đặt \(a=2k\)
\(\Rightarrow a\left(a+2\right)\left(a+4\right)=2k\left(2k+2\right)\left(2k+4\right)=\)
\(=8k\left(k+1\right)\left(k+2\right)=A\)
Ta thấy
\(k\left(k+1\right)\) chẵn đặt \(k\left(k+1\right)=2p\)
\(\Rightarrow A=16p\left(k+2\right)⋮16\) (1)
Ta thấy \(k\left(k+1\right)\left(k+2\right)⋮3\) (2) (Tích của 3 số TN liên tiếp)
Từ (1) và (2)
\(\Rightarrow A⋮16x3\Rightarrow A⋮48\) vì \(\left(16,3\right)=1\)
\([(x+1)(x+4)][(x+2)(x+3)]+1 \)
\(=(x^{2}+5x+4)((x^{2}+5x+6)+1 \)
\(Đặt h=x^{2}+5x+5\)
\(\Leftrightarrow\)\(P=(h-1)(h+1)+1\)
\(=h^{2}-1+1=h^{2}=(x^{2}+5x+5)^{2}\)\(\ge\)0\(\forall\)x
Với x ≥ 0 ⇒ x + 1, x + 2, x + 3, x + 4 đều > 0
⇒ P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Với -1 ≤ x ≤ -4 thì P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Với x < -4 ⇒ x + 1, x + 2, x + 3, x + 4 đều < 0
⇒ P = (x + 1). (x + 2). (x + 3). (x + 4) + 1 > 0
Vậy ∀ x thì