Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(3B=3+3^2+3^3+...+3^{90}\)
\(\Leftrightarrow2B=3^{90}-1\)
hay \(B=\dfrac{3^{90}-1}{2}\)
b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)
\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)
Ta có:
\(Q\left(1\right)=a+b+c+d\Rightarrow a+b+c⋮3\left(1\right)\)
\(Q\left(-1\right)=-a+b-c+d⋮3\left(2\right)\)
Cộng (1) với (2), ta có: \(2b+2d⋮3\)
Mà \(d⋮3\Rightarrow2d⋮3\)
\(\Rightarrow2b⋮3\Rightarrow b⋮3\)
\(Q\left(2\right)=8a+4b+2c+d⋮3\)
\(\Rightarrow8a+2c⋮3\)(vì \(4b+d⋮3\))
\(\Rightarrow6a+2a+2c⋮3\)
\(\Rightarrow6a+2\left(a+c\right)⋮3\)
Mà \(a+c⋮3\left(a+b+c⋮3,b⋮3\right)\)
\(\Rightarrow6a⋮3\)
\(\Rightarrow a⋮3\)
\(\Rightarrow c⋮3\)
\(d⋮3\left(gt\right)\)
a) \(\dfrac{x}{48}=-\dfrac{4}{7}\Rightarrow x=-\dfrac{192}{7}\)
b) \(\left(x+\dfrac{4}{5}\right)-\dfrac{2}{5}=\dfrac{3}{5}\Rightarrow x+\dfrac{4}{5}=1\)
\(\Rightarrow x=\dfrac{1}{5}\)
c) \(2\left|x-1\right|^2=72\Rightarrow\left|x-1\right|^2=36\)
\(\Rightarrow\left|x-1\right|=6\)
TH1: x - 1 = -6 => x = -5
TH2: x - 1 = 6 => x = 7
e) \(\dfrac{x}{2,5}=\dfrac{4}{5}\Rightarrow x=2\)
f) | x - 2 | = 1 + 4 = 5
TH1: x - 2 = -5 => x = -3
TH2: x - 2 = 5 => x = 7
a) \(\dfrac{x}{48}=\dfrac{-4}{7}\)
⇒ x.7=48.(-4)
7x = -192
x=\(\dfrac{-192}{7}\) Vậy x=\(\dfrac{-192}{7}\)
b) \(\left(x+\dfrac{4}{5}\right)-\dfrac{2}{5}=\dfrac{3}{5}\)
\(\left(x+\dfrac{4}{5}\right)=\dfrac{3}{5}+\dfrac{2}{5}\)
\(x+\dfrac{4}{5}=1\)
\(x=1-\dfrac{4}{5}\)
\(x=\dfrac{1}{5}\)
c) chưa từng gặp dạng với giá trị tuyệt đối sory
d) \(\dfrac{1}{6}x-\dfrac{2}{3}=2\)
\(\dfrac{1}{6}x=2+\dfrac{2}{3}\)
\(\dfrac{1}{6}x=\dfrac{8}{3}\)
\(x=\dfrac{8}{3}:\dfrac{1}{6}\)
\(x=16\)
e) \(\dfrac{x}{2,5}=\dfrac{4}{5}\)
=> x.5 = 4.2,5
5x=10
x=10:5
x=2
f) |x-2|-4=1
|x-2|=1+4
|x-2|=5
=>\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=5+2\\x=-5+2\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
đôi khi cũng có sai sót , hãy xem lại thật kĩ
a)Với x1 = x2 = 1
\( \implies\) \(f\left(1\right)=f\left(1.1\right)\)
\( \implies\) \(f\left(1\right)=f\left(1\right).f\left(1\right)\)
\( \implies\)\(f\left(1\right).f\left(1\right)-f\left(1\right)=0\)
\( \implies\) \(f\left(1\right).\left[f\left(1\right)-1\right]=0\)
\( \implies\) \(\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)
Mà \(f\left(x\right)\) khác \(0\) ( với mọi \(x\) \(\in\) \(R\) ; \(x\) khác \(0\) )
\( \implies\) \(f\left(1\right)\) khác \(0\)
\( \implies\) \(f\left(1\right)-1=0\)
\( \implies\) \(f\left(1\right)=1\)
b)Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)
\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)
\( \implies\) \(f\left(\frac{1}{x}\right).f\left(x\right)=1\)
\( \implies\) \(f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)
\( \implies\) \(f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)
Có: \(\left\{{}\begin{matrix}\frac{a}{k}=\frac{x}{a}\\\frac{b}{k}=\frac{y}{b}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=kx\\b^2=ky\end{matrix}\right.\\ \Rightarrow\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)
Ta có:
\(\left\{{}\begin{matrix}\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=kx\\\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=ky\end{matrix}\right.\)
Chia theo vế ta được:
\(a^2:b^2=kx:ky\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{kx}{ky}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right).\)
Chúc bạn học tốt!