So sánh:
A= \(\frac{10^5+4}{10^5-5}\)với B= \(\frac{10^5+3}{10^5-6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(10^5+4)/(10^5-1)=(10^5-1+5)/(10^5-1)={(10^5-1)/(10^5-1)}+{5/(10^5-1)}=1+{5/(10^5-1)} (1)
(10^5+3)/(10^5-2)=(10^5-2+5)/(10^5-2)={(10^5-2)/(10^5-2)}+{5/(10^5-2)}=1+{5/(10^5-2)} (2)
từ 1 và 2 ta so sánh{5/(10^5-1)} và {5/(10^5-2)}....
suy ra ... kết quả
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
Ta có: \(A=\frac{10^5+3}{10^5-7}=\frac{\left(10^5-7\right)+10}{10^5-7}=1+\frac{10}{10^5-7}\)
\(B=\frac{10^5+4}{10^5-6}=\frac{\left(10^5-6\right)+10}{10^5-6}=1+\frac{10}{10^5-6}\)
Vì \(\frac{10}{10^5-7}>\frac{10}{10^5-6}\), do đó \(A>B\)
Ta có :
\(A=\frac{10^5+4}{10^5-1}=\frac{10^5-1+5}{10^5-1}=\frac{10^5-1}{10^5-1}+\frac{5}{10^5-1}=1+\frac{5}{10^5-1}\)
\(B=\frac{10^5+3}{10^5-2}=\frac{10^5-2+5}{10^5-2}=\frac{10^5-2}{10^5-2}+\frac{5}{10^5-2}=1+\frac{5}{10^5-2}\)
Do \(1+\frac{5}{10^5-1}>1+\frac{5}{10^5-2}\)
\(\Rightarrow A>B\)
cũng hơi dễ!!
c1 :ở tử và mẫu của A và B đều là 105 (= nhau)
ở tử của A và B đều là phép +
ở mẫu của A và B đều là phép -
Suy ra: của A= 4+1=5
của B= 3+2=5
Vậy: A và B bằng nhau (A=B)
c2: tính bằng máy tính: A=1,000050001
B=1,000050001
Vậy A=B
đúng thì k cho mik nha!!!
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)