1. a) Tìm tất cả các nghiệm của các đa thức: \(H\left(x\right)=4x^2-x\)
b) Chứng minh không có số nguyên nào là nghiệm của đa thức:
\(K\left(x\right)=2x^4+x^3+x^2-4x-7\)
Giúp mk với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
a, tự làm
b, 4x3 -x
Ta có:x(4x2-1)=0
=>x=0 hoặc 4x2-1=0
=>x=0 hoặc 4x2=1
=>x=0 hoặc \(x^2=\frac{1}{4}\)
=>x=0 hoặc \(x=\sqrt{\frac{1}{4}}\)
=>x=0 hoặc \(x=\frac{1}{2}\)
Vậy đa thức có 2 nghiệm là x= 0 và \(x=\frac{1}{2}\)
a) P(x) + Q(x) = x4 - 3x3 + x2 + 5x + 2 + 3x3 + 5x + 4
= x4 + ( 3x3 - 3x3 ) + x2 + ( 5x + 5x ) + ( 4 + 2 )
= x4 + x2 + 10x + 6
P(x) - Q(x) = ( x4 - 3x3 + x2 + 5x + 2 ) - ( 3x3 + 5x + 4 )
= x4 - 3x3 + x2 + 5x + 2 - 3x3 - 5x - 4
= x4 + ( -3x3 - 3x3 ) + x2 + ( 5x - 5x ) + ( 2 - 4 )
= x4 - 6x3 + x2 - 2
b) H(x) = 4x3 - x
H(x) = 0 <=> 4x3 - x = 0
<=> x(4x2 - 1 ) = 0
<=> x = 0 hoặc 4x2 - 1 = 0
* 4x2 - 1 = 0
4x2 = 1
x2 = 1/4
x = \(\pm\sqrt{\frac{1}{2}}\)
Vậy nghiệm của đa thức là 0 và \(\pm\sqrt{\frac{1}{2}}\)
Ủa thế phải hỏi gì thêm nx à??? =))
Bn đọc kĩ câu hỏi giùm!
ừ