tìm x,y biết:x/6-7/y=1/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x/2 = 1/6 + 3/y ⇒ x/2 - 1/6 = 3/y ⇒ 3x - 1/ 6 = 3/y
Vậy y( 3x - 1 ) = 18
Mà x; y nguyên nên 3x - 1 nguyên và y; 3x - 1 ϵ Ư( 18 ) = { -1; 1; 2; -2; -3; 3; -6; 6; 18; -18 }
Vì 3x - 1 chia 3 dư 2 nên ( 3x - 1 ) ϵ { 2; -1 }
Nếu 3x - 1 = 2 ⇒ x = 1; y = 9
Nếu 3x - 1 = -1 ⇒ x = 0; y = -18
Vậy các cặp số nguyên ( x; y ) cần tìm là ( 1; 9 ) ; ( 0; -18 )
Ta có: \(\frac{x}{6}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{6}-\frac{3}{6}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x-3}{6}=\frac{1}{y}\)
\(\Leftrightarrow\left(x-3\right)y=6\)
Lập bảng nốt thôi
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài
xy + 5x + y = 7
Nếu x = 0 thì y = 7
Nếu y = 0 thì 5x = 7 loại => y > 0
x = 1 vì nếu x > 1 thì 5x > 7
x = 1 => y = 1
ĐS : x = 0 và y = 7
x = 1 và y = 1
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
Bạn đúng 1 phần, vì đây là 2x2 và y2 nên nó sẽ có 2 trường hợp!
\(\dfrac{x}{3}\)=\(\dfrac{y}{6}\)=\(\dfrac{2x^2}{18}\)=\(\dfrac{y^2}{36}\)=\(\dfrac{2x^2-y^2}{18-36}\)=\(\dfrac{-8}{-18}\) =\(\dfrac{4}{9}\)
=>TH1: \(\dfrac{4}{9}\) ⇒\(\left\{{}\begin{matrix}\dfrac{4}{3}\\\dfrac{8}{3}\end{matrix}\right.\)
=>TH2: \(\dfrac{-4}{9}\)⇒\(\left\{{}\begin{matrix}\dfrac{-4}{3}\\\dfrac{-8}{3}\end{matrix}\right.\)
Ta có :\(\frac{x}{6}-\frac{7}{y}=\frac{1}{12}\)(y khác 0)
=> \(\frac{xy-42}{6y}=\frac{1}{12}\)
=> 12(xy - 42) = 6y
=> 12xy - 504 = 6y
=> 12xy - 6y = 504
=> 2xy - y = 84
=> y(2x - 1) = 84
Ta có 84 = 1.84 = (-1).(-84) = 42.2 = (-42).(-2) = 21.4 = (-21).(-4) = 7.12 = (-7).(-12) = (-3).(-28) = 28.3 = 14.6 = (-14).(-6)
Lập bảng xét 24 trường hợp
Vậy các cặp (y;x) thỏa mãn là : (84;1) ; (4 ; 11) ; (12 ; 4) ; (28 ; 2) ; (-4 ; - 10) ; (-12 ; -3) ; (-28 ; -1) ; (-84 ; 0)