Cho F(x) = -5x3 + 6x2 + 3x -1
G(x) = -5x3 + 6x2 + 4x + 2
Tính N(x) + F(x) = - G(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
a, Thu gọn và sắp xếp theo lũy thừa giảm dần của biến :
* \(F_{\left(x\right)}=5x^2-1+3x+x^2-5x^3\)
\(=-5x^3+6x^2+3x-1\)
* \(G_{\left(x\right)}=2-3x^3+6x^2+5x-2x^3-x\)
\(=-5x^3+6x^2+4x+2\)
b, Ta có :
* \(M_{\left(x\right)}=F_{\left(x\right)}-G_{\left(x\right)}\)
\(\Rightarrow M_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)-\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)
\(=-x-3\).
* \(N_{\left(x\right)}=F_{\left(x\right)}+G_{\left(x\right)}\)
\(\Rightarrow N_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)+\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)
\(=-10x^3+12x^2+7x+1\).
c, Để tìm nghiệm của đa thức \(M_{\left(x\right)}\) ta đặt \(M_{\left(x\right)}=0\) vào \(M_{\left(x\right)}=-x-3\) thì ta được :
\(-x-3=0\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\)
Vậy nghiệm của đa thức \(M_{\left(x\right)}\) là \(x=-3\).
b)M(x)=F(x)-G(x)
F(x)-G(x)=(-5x3 -6x2 + 3x - 1) - (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 - 5x3 - 6x2 - 4x - 2
=(-5x3 - 5x3) + (-6x2 - 6x2) + (3x - 4x) + (-1 - 2)
=-10x3 - 12x2 - 1x - 3
Vậy M(x)=-10x3 - 12x2 - 1x - 3
N(x)=F(x)+G(x)=(-5x3 - 6x2 + 3x - 1) + (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 + (-5x3) + 6x2 + 4x + 2
=-5x3 + (-5x3) + (-6x2 + 6x2) + (3x + 4x) + (-1 + 2)
=-10x3 + x2 + 7x + 1
-Chúc bạn học tốt nhaaa
b. h(x) = (2x3 + 3x2 - 2x + 3) - (2x3 + 3x2 - 7x + 2)
= 2x3 + 3x2 - 2x + 3 - 2x3 - 3x2 + 7x - 2
= 5x + 1 (0.5 điểm)
g(x) = (2x3 + 3x2 - 2x + 3) + (2x3 + 3x2 - 7x + 2)
= 2x3 + 3x2 - 2x + 3 + 2x3 + 3x2 - 7x + 2
= 4x3 + 6x2 - 9x + 5 (0.5 điểm)
Thay x = 0 vào f ( x ) = x 5 + 2 ta có f ( 0 ) = 0 5 + 2 = 2
Thay x = 1 vào g ( x ) = 5 x 3 - 4 x + 2 ta được g ( 1 ) = 5 . 1 3 - 4 . 1 + 2 = 3
Suy ra f(0) < g(1) (do 2 < 3)
Chọn đáp án C
P(x) = \(-x^4-5x^3-6x^2+5x-1\)
Q(x) = \(x^4+5x^3+6x^2-2x+3\)
M(x) = P(x) + Q(x)
\(-x^4-5x^3-6x^2+5x-1\)
+
\(x^4+5x^3+6x^2-2x+3\)
------------------------------------
\(3x+2\)
Vậy : M(x) = 3x + 2
Nghiệm của M(x) : 3x + 2 = 0
3x = -2
x = \(-\dfrac{2}{3}\)
a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)
\(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)
\(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)
\(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)
\(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)
\(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)
b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)
Vậy \(M\left(x\right)=3x+2\)
Cho \(M\left(x\right)=0\)
hay \(3x+2=0\)
\(3x\) \(=0-2\)
\(3x\) \(=-2\)
\(x\) \(=-2:3\)
\(x\) \(=\dfrac{-2}{3}\)
Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
a \(f\left(x\right)-h\left(x\right)=g\left(x\right)\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2-3x+9\right)\)
\(h\left(x\right)=2x^4+5x^3-x+8-x^4+x^2+3x-9\)
\(h\left(x\right)=3x^4+5x^3+x^2+2x-1\)
b \(h\left(x\right)-g\left(x\right)=f\left(x\right)\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(h\left(x\right)=2x^4+5x^3-x+8+x^4-x^2-3x+9\)
\(h\left(x\right)=3x^4+5x^3-x^2-4x+17\)
\(a,10x^2y-20xy^2=10xy\left(x-2y\right)\\ b,x^2-y^2+10y-25=x^2-\left(y^2-10y+25\right)=x^2-\left(y-5\right)^2=\left(x-y+5\right)\left(x+y-5\right)\\ c,x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\\ d,x^3+3x^2-16x-48=\left(x^3+3x^2\right)-\left(16x+48\right)=x^2\left(x+3\right)-16\left(x+3\right)=\left(x+3\right)\left(x^2-16\right)=\left(x+3\right)\left(x+4\right)\left(x-4\right)\)
\(e,9x^3+6x^2+x=x\left(9x^2+6x+1\right)=x\left(3x+1\right)^2\\ f,x^4+5x^3+15x-9=\left(x^4+5x^3-3x^2\right)+\left(3x^2+15x-9\right)=x^2\left(x^2+5x-3\right)+3\left(x^2+5x-3\right)=\left(x^2+3\right)\left(x^2+5x-3\right)\)
b. M(x) = P(x) + Q(x) = 10x3 + 5x2 - 4x - 1 (0.5 điểm)
N(x) = P(x) - Q(x) = x2 - 9 (0.5 điểm)