K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 6 2020

Câu 2:

Gọi M là trung điểm AD \(\Rightarrow MH\) là đường trung bình tam giác ABD

\(\Rightarrow MH//BD\Rightarrow\) góc giữa MH và (SAD) bằng góc giữa BD và (SCD)

Trong mặt phẳng (SAB) từ H kẻ \(HP\perp SA\) (1)

\(SH\perp\left(ABCD\right)\Rightarrow SH\perp AD\)

\(AD\perp AB\Rightarrow AD\perp\left(SAB\right)\)

\(\Rightarrow AD\perp HP\) (2)

(1);(2) \(\Rightarrow HP\perp\left(SAD\right)\)

\(\Rightarrow\widehat{HMP}\) là góc giữa MH và (SAD) hay \(\widehat{HMP}=\alpha\)

\(AC=2a\sqrt{2}\Rightarrow MH=\frac{1}{2}AC=a\sqrt{2}\)

\(SH=\frac{SA\sqrt{3}}{2}=a\sqrt{3};AH=\frac{1}{2}AB=a\)

\(\frac{1}{HP^2}=\frac{1}{SH^2}+\frac{1}{AH^2}\Rightarrow HP=\frac{SH.AH}{\sqrt{SH^2+AH^2}}=\frac{a\sqrt{3}}{2}\)

\(\Rightarrow sin\alpha=\frac{HP}{MH}=\frac{\sqrt{6}}{4}\Rightarrow\alpha\approx37^045'\)

Bài 3 giống hệ bài 2, đơn giản là thu nhỏ kích thước chóp còn 1 nửa, nhưng góc ko thay đổi nên kết quả y hệt bài 2

NV
9 tháng 6 2020

1.

\(f'\left(x\right)=\left(m-1\right)x^2-2\left(m-1\right)x-m-4\)

Xét \(\left(m-1\right)x^2-2\left(m-1\right)x-m-4\ge0\) (1)

- Với \(m=1\) BPT vô nghiệm (ktm)

- Với \(m\ne1\) để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\Delta'=\left(m-1\right)^2+\left(m-1\right)\left(m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left(m-1\right)\left(2m+3\right)< 0\end{matrix}\right.\) \(\Rightarrow-\frac{3}{2}< m< 1\)

Vậy để BPT có nghiệm thì: \(\left[{}\begin{matrix}m>1\\m\le-\frac{3}{2}\end{matrix}\right.\)

14 tháng 2 2017

Chọn D

.

Hàm số đạt cực tiểu tại

.

Phương trình vô nghiệm.

Vậy không tìm được thỏa mãn yêu cầu bài toán.

31 tháng 10 2019

Đáp án D.

Ta có: y’ = 3x2 – 6x + 3(m2 – 1)

Hàm số đạt cực tiểu tại x0 = 2 => y’(2) = 0 => m = ±1

Ta có: y’’ = 6x – 6 => y’’(2) = 12 > 0, m

Vậy hàm số đạt cực tiểu tại x0 = 2 khi m = ±1

8 tháng 9 2017

2 tháng 8 2018

Bài 2:

x^3+6x^2+12x+m chia hết cho x+2

=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2

=>m-8=0

=>m=8

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

3 tháng 1 2020