Cho tam giác ABC có G là trọng tâm . Đặt \(\widehat{GBC}=\alpha\), \(\widehat{GBC}=\beta\), \(\widehat{GCA}=\gamma\). Chứng minh rằng \(\cot\alpha+\cot\beta+\cot\gamma=\frac{3\left(a^2+b^2+c^2\right)}{4S}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).
b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).
\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)
\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)
\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)
\(=0\)
1) Trước hết ta sẽ chứng minh BĐT với 2 số
Với x,y,z,t > 0 ta luôn có: \(\frac{x^2}{y}+\frac{z^2}{t}\ge\frac{\left(x+z\right)^2}{y+t}\)
BĐT cần chứng minh tương đương:
\(BĐT\Leftrightarrow\frac{x^2t+z^2y}{yt}\ge\frac{\left(x+z\right)^2}{y+t}\Leftrightarrow\left(x^2t+z^2y\right)\left(y+t\right)\ge yt\left(x+z\right)^2\)
(Biến đổi tương đương)
Khi bất đẳng thức trên đúng ta sẽ CM như sau:
\(\frac{a^2}{\alpha}+\frac{b^2}{\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b\right)^2}{\alpha+\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b+c\right)^2}{\alpha+\beta+\gamma}\)
Dấu "=" xảy ra khi: \(\frac{a}{\alpha}=\frac{b}{\beta}=\frac{c}{\gamma}\)
a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .
a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI
Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC
= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).
+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.
Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR
=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)
=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp
=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).
b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM
Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M
Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K
Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)
Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng
Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L
=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).
c) Gọi P là trực tâm của \(\Delta\)AJQ
Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI
Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)
Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp
^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900
=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).
d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC
Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]
Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900
Ta xét thứ tự các điểm trên cạnh AC:
+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)
=> ^IES = ^IFT < 900 => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK
Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)
+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800
=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\) (**)
Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).