K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

a) 6 chia hết cho x - 1

< = > x - 1 thuộc Ư(6) = {-6;-3;-2;-1;1;2;3;6}

x - 1 = -6 <=> x=  -5

x - 1 = -3 => x = -2

x - 1 = -2 => x= - 1

x - 1 = -1 => x = 0

x - 1 = 1 = > x = 2

x - 1 = 2 => x=  3

x - 1 = 3 => x = 4

x - 1 = 6 => x=  7

Vậy x  thuộc {0;2;3;4;7}

19 tháng 12 2015

what?NgUyỄn NaM cAo thế mà cũng được tik lạ quá vậy

30 tháng 10 2016

a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)

\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)

\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)

 

30 tháng 10 2016

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)

\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)

Ta tính tổng \(1+2+3+...+100\\ \) trước

Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)

Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)

Thay số vào ta có được:

\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

4 tháng 12 2023

thiếu bài 16

 

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a)

\(\begin{array}{l}\left( {9x - {2^3}} \right):5 = 2\\9x - {2^3} = 2.5\\9x - 8 = 10\\9x = 18\\x = 2\end{array}\)

Vậy \(x = 2\)

b)

\(\begin{array}{l}\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\\\left[ {81 - \left( {64 + 14} \right):13} \right]x = 125 + 100\\\left[ {81 - 78:13} \right]x = 125 + 100\\\left[ {81 - 6} \right]x = 225\\75x = 225\\x = 3\end{array}\)

Vậy \(x = 3\)

1 tháng 10 2016

a, A = [ -2; 5)

B= ( - \(\infty\); 3 ]

C=(- \(\infty\) ; 4 )

18 tháng 5 2018

a.

\(\left(x^3-7x+6\right):\left(x+3\right)\)

\(=\left(x^3+3x^2-3x^2-9x+2x+6\right):\left(x+3\right)\)

\(=\left[\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)\right]:\left(x+3\right)\)

\(=\left[x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\right]:\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+2\right):\left(x+3\right)\)

\(=x^2-3x+2\)

18 tháng 5 2018

Đặt phép chia không được sao?

19 tháng 4 2016

Ta có : \(y'=4x^3-4\left(m-1\right)x\)

           \(y'=0\Leftrightarrow4x^3-4\left(m-1\right)x=0\Leftrightarrow x\left[x^2-\left(m-1\right)\right]=0\)

Trường hợp 1 : nếu \(m-1\le0\Leftrightarrow m\le1\), hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\), vậy \(m\le1\) thỏa mãn yêu cầu bài toán

Trường hợp 2 : nếu \(m-1>0\Leftrightarrow m>1\)hàm số đồng biến trên khoảng \(\left(-\sqrt{m-1};0\right)\) và \(\left(\sqrt{m-1};+\infty\right)\)

Để hàm số đồng biến trên khoảng (1;3) thì \(\left(\sqrt{m-1}\le1\Leftrightarrow m\le2\right)\)

Vậy hàm số đồng biến trên khoảng (1;3) \(\Leftrightarrow m\in\left(-\infty;2\right)\)

  

 

8 tháng 9 2016

\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)

\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)

\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)

\(=\frac{x}{x-1}\)

8 tháng 9 2016

e cảm ơn cj nhug bài này thầy chữa tối wa òi hehe