\(a^2+b^2+c^2=3\)
\(P=ab+bc+ca-abc\)
a,b,c không âm
gtln, gtnn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+1}{a+b+c-abc}=\dfrac{\left(a+b+c\right)^2+1}{a+b+c-abc}\ge\dfrac{\left(a+b+c\right)^2+1}{a+b+c}\)
\(\Rightarrow P\ge a+b+c+\dfrac{1}{a+b+c}\) (1)
\(P=\dfrac{a^2+b^2+c^2+3\left(ab+bc+ca\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}=\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(P=\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{a+b+c}\left(\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+c+b}{a+c}\right)\)
\(P=\dfrac{1}{a+b+c}\left(3+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\right)\)
\(P\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2}\right)=\dfrac{3}{a+b+c}+\dfrac{a+b+c}{2}\)
\(\Rightarrow3P\ge\dfrac{3}{2}\left(a+b+c\right)+\dfrac{9}{a+b+c}\) (2)
Cộng vế (1) và (2):
\(\Rightarrow4P\ge\dfrac{5}{2}\left(a+b+c\right)+\dfrac{10}{a+b+c}\ge2\sqrt{\dfrac{50\left(a+b+c\right)}{2\left(a+b+c\right)}}=10\)
\(\Rightarrow P\ge\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;0\right)\) và các hoán vị
Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).
Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).
Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).
\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).
Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\); \(9t^3-9t^2+4t+12>4t+12>0\).
Nên \(P\ge\dfrac{28}{9}\).
Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.
Vậy...
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a+b+c\right)^2}{ab+bc+ca}\)
\(=\left[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\right]+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)
Đẳng thức xảy ra khi \(a=b=c\)
\(2P=\frac{2ab+2bc+2ca}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^2}{abc}=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^3}{abc}\)
\(\Rightarrow2P+1=\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)}{abc}\right)=\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\right)\)
\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{18}{ab+bc+ca}\right)\)
\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{16}{ab+bc+ca}\right)\)
\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{16}{ab+bc+ca}\right)\)
\(\Rightarrow2P+1\ge\left(a+b+c\right)^2\left(\frac{9}{\left(a+b+c\right)^2}+\frac{48}{\left(a+b+c\right)^2}\right)=57\)
\(\Rightarrow P\ge28\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{3}{4}\). (1)
Đặt \(\sqrt{a^2+b^2+c^2}=t\Rightarrow\sqrt{\dfrac{4}{3}}\le t\le2\).
\(\dfrac{3\sqrt{a^2+b^2+c^2}}{4}+\dfrac{ab+bc+ca}{2}=\dfrac{3t}{4}+\dfrac{4-2t^2}{4}=\dfrac{\left(2-t\right)\left(2t+1\right)}{4}+\dfrac{3}{2}\ge\dfrac{3}{2}\). (2)
Cộng vế với vế của (1), (2) ta được \(P\ge\dfrac{9}{4}\).
...
\(M\ge3\left(ab+bc+ca\right)+2\sqrt{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}=3\left(ab+bc+ca\right)+2\sqrt{1-2\left(ab+bc+ca\right)}\)
\(\text{Đặt }t=\sqrt{1-2\left(ab+bc+ca\right)}\Rightarrow ab+bc+ca=\frac{1-t^2}{2}\)
\(\text{Ta có: }0\le ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)
\(\Rightarrow ab+bc+ca\in\left[0;\frac{1}{3}\right]\)
\(\Rightarrow-2\left(ab+bc+ca\right)\in\left[-\frac{2}{3};0\right]\)
\(\Rightarrow1-2\left(ab+bc+ca\right)\in\left[\frac{1}{3};1\right]\)
\(\Rightarrow t\in\left[\frac{1}{\sqrt{3}};1\right]\)
\(M=3.\frac{1-t^2}{2}+2t=-\frac{3}{2}t^2+2t+\frac{3}{2}\)
Lập bảng biến thiên hàm bậc 2, suy ra \(\text{Min }M\text{ (}t\in\left[\frac{1}{\sqrt{3}};1\right]\text{) }=2\text{ tại }t=1\)
Vậy GTNN của M là 2 khi t = 1 hay \(ab+bc+ca=0\Leftrightarrow\left(a;b;c\right)=\left(1;0;0\right);\left(0;0;1\right);\left(0;1;0\right)\)