Cho góc xOy , gọi Oz là tia phân giác của góc xOy , Trên Ox lấy điểm A , trên Oy lấy điểm B sao cho OB=OA. Lấy điểm I trên Oz.
a) chúng minh góc OAI= góc OBI
b) đoạn thẳng AB cắt Oz tại H . chúng minh H là trung điểm của AB.
m.n giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔOAI và ΔOBI có
OA=OB(gt)
\(\widehat{AOI}=\widehat{BOI}\)(OI là tia phân giác của \(\widehat{AOB}\))
OI chung
Do đó: ΔOAI=ΔOBI(c-g-c)
b) Xét ΔOHA và ΔOHB có
OA=OB(gt)
\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))
OH chungDo đó: ΔOHA=ΔOHB(c-g-c)
nên AH=BH(hai cạnh tương ứng)
mà A,H,B thẳng hàng(gt)
nên H là trung điểm của AB(đpcm)
a) Xét tam giác OAI và tam giác OBI:
^AOI = ^BOI (Oz là tia phân giác của góc xOy)
OA = OB (gt)
OI chung
=> Tam giác OAI = Tam giác OBI (c - g - c)
b) Xét tam giác AOB có: OA = OB (gt)
=> Tam giác AOB cân tại A
Lại có: OH là đường phân giác của góc xOy (H \(\in Oz\))
=> OH là đường trung tuyến (TC các đường trong tam giác cân)
=> H là trung điểm của AB
a: Xet ΔOAI và ΔOBI có
OA=OB
góc AOI=góc BOI
OI chung
=>ΔOAI=ΔOBI
b: ΔOAB cân tại O
mà OH là phân giác
nên OH vuông góc BA và H là trung điểm của BA
Xét ΔIHA vuông tại H và ΔIHB vuông tại H có
IH chung
HA=HB
=>ΔIHA=ΔIHB
c: IH vuông góc AB
=>ΔIHA vuông tại H, ΔIHB vuông tại H
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
a)\(\Delta OAI\)và \(\Delta OBI\)có:
OA = OB (theo GT)
\(\widehat{O_1}=\widehat{O_2}\)(Vì Oz là tia phân giác của \(\widehat{xOy}\))
OI: cạnh chung
Do đó: \(\Delta OAI=\Delta OBI\)(c.g.c)
b) \(\Delta OAH\)và \(\Delta OBH\)có:
OA = OB (theo GT)
\(\widehat{O_1}=\widehat{O_2}\)(Vì Oz là tia phân giác của \(\widehat{xOy}\))
OH: cạnh chung
Do đó: \(\Delta OAH=\Delta OBH\)(c.g.c)
Suy ra: AH = BH (cặp cạnh tương ứng)
Mà điểm H nằm giữa hai điểm A và B
Nên H là trung điểm của AB
chưa học =>bó tay.com