K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

21 tháng 3 2023

a.

• áp dụng định lí pytago trong tam giác ABC vuông tại A, ta có :

BC^2 = AC^2 + AB^2 

BC^2 = 3^2 + 4^2

BC^2 = 9 + 16

BC^2 = 25

BC = căn bậc 2 của 25

BC = 5 ( cm )

vậy BC = 5 cm

• diện tích của tam giác ABC là :

3 . 4 : 2 = 6 ( cm^2 )

vậy diện tích của tam giác ABC là 6 cm^2

b. xét tam giác HBA và tam giác HAC, ta có :

góc HBA = góc HAC ( hai góc kề bù )

góc A là góc chung ( gt )

do đó: tam giác HBA và tam giác HAC là hai tam giác đồng dạng ( g - g )

c. HA/HB = HC/HA ( cmt )

=> HA^2 = HB . HC

d. vì BD = 1/2BC ( t/chất của đường phân giác trong tam giác vuông )

nên BD = 1/2 . 5 = 2,5 ( cm )

mà BD = DC = 1/2BC

=> DC = 2,5 ( cm )

vậy BC , DC = 2,5 cm

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=3^2/5=1.8cm

\(S_{BCA}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

b Xét ΔHBA vuông tại H và ΔHAC vuông tại H co

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

d: ΔABC có AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

27 tháng 2 2022

Xét tam giác vuông ABC có:

\(AB^2+AC^2=BC^2\\ =>3^2+AC^2=5^2\\ =>AC^2=16\\ =>AC=4cm\)

27 tháng 2 2022

-Thiếu rồi bạn.

21 tháng 7 2016

chịu 

 

https://www.slideshare.net/PhamNguyenThucLinh/hc-sinh-gii-hnh-hc-8

Bạn vào link này xem nhé