K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

Muốn chứng minh hai số là hai số nguyên tố cùng nhau, ta sẽ chứng minh chúng có ƯCLN = 1

Gọi d là ƯC(21n + 4 ; 14n + 3)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)

=> ( 42n + 8 ) - ( 42n + 9 ) chia hết cho d

=> 42n + 8 - 42n - 9 chia hết cho d

=> ( 42n - 42n ) + ( 8 - 9 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(21n + 4 ; 14n + 3) = 1

=> đpcm