Câu 1: Với giá trị nào của x thì giả trị phân thức \(\frac{x+4}{3}\) không nhỏ hơn \(\frac{2x}{5}\)
(mink đag cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ta có: m<n
⇔2m<2n(nhân hai vế của bất đẳng thức cho 2)
⇔2m+1<2n+1(cộng hai vế của bất đẳng thức cho 1)(đpcm)
b) Ta có: \(\frac{x-3}{3}< \frac{x-2}{4}\)
\(\Leftrightarrow4\left(x-3\right)< 3\left(x-2\right)\)
\(\Leftrightarrow4x-12< 3x-6\)
\(\Leftrightarrow4x-12-3x+6< 0\)
\(\Leftrightarrow x-6< 0\)
hay x<6
Vậy: S={x|x<6}
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
Bài 1:
a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)
TH1: \(\frac{3x-2}{4}\) = \(\frac{3x+3}{6}\)
=> (3x-2)6 = (3x+3)4
18x -12= 12x+12
=> x = 4
TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\)
=> (3x-2)6 > (3x+3)4
18x-12> 12x+12
=> x \(\ge\) 5
b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2
c) Phần c bạn cũng xét tương tự như phần a
TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)
TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)
\(a,x^3+8=x^2-4\)
\(x^3+12-x^2=0\)
\(\left(x+2\right)\left(x^2-3x+6\right)=0\)
\(x=2;x^2-3x=6\)
\(x\left(x-3\right)=6\)
\(x=6;9\)
ko bt cách lm chỉ bt thử nghiệm thui ==
Bài 2 Với giá trị nào của m thì phương trình :
(m+5).x-2m.(x-1)=4
Gỉa sử m=1
\(\Rightarrow\left(1+5\right)x-2\left(1-1\right)=4\)
\(\Rightarrow6x-0=4\)
\(\Rightarrow6x=4\)
\(\Rightarrow x=\frac{2}{3}\)( tm )
từ từ đổi may lm nốt :v