K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Ta có : \(x^2+\sqrt{x-2020}=y^2+\sqrt{y-2020}\)

\(\Leftrightarrow\left(x^2-y^2\right)+\left(\sqrt{x-2020}-\sqrt{y-2020}\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\frac{x-y}{\sqrt{x-2020}+\sqrt{y-2020}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+\frac{1}{\sqrt{x-2020}+\sqrt{y-2020}}\right)=0\)

\(\Leftrightarrow x=y\)( vì VP của ngoặc > 0 )

27 tháng 6 2021

`(x+sqrt{x^2+2020})(sqrt{x^2+2020}-x)=x^2+2020-x^2=2020`

`=>y+sqrt{y^2+2020}=sqrt{x^2+2020}-x`

`<=>x+y=sqrt{x^2+2020}-sqrt{y^2+2020}`

Tương tự:`x+y=sqrt{y^2+2020}-sqrt{x^2+2020}`

Cộng từng vế

`=>2(x+y)=0`

`<=>S=0+2020=2020`

27 tháng 6 2021

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\) (1)

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(y-\sqrt{y^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)

\(\Leftrightarrow\left(y^2-y^2-2020\right)\left(x+\sqrt{x^2+2020}\right)=2020\left(y-\sqrt{y^2+2020}\right)\)

\(\Leftrightarrow-x-\sqrt{x^2+2020}=y-\sqrt{y^2+2020}\) (2)

Từ (1) (2) cộng vế với vế \(\Rightarrow-\left(x+y\right)-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)=x+y-\left(\sqrt{y^2+2020}+\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

\(S=x+y+2020=2020\)

ĐKXĐ: \(\left\{{}\begin{matrix}2020-y^2\ge0\\2020-z^2\ge0\\2020-x^2\ge0\end{matrix}\right.\)

Ta có:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}=3030\)

\(\Leftrightarrow2x\sqrt{2020-y^2}+2y\sqrt{2020-z^2}+2z\sqrt{2020-x^2}=6060\)

\(\Leftrightarrow2020-y^2-2x\sqrt{2020-y^2}+x^2+2020-z^2-2y\sqrt{2020-z^2}+y^2+2020-x^2-2z\sqrt{2020-x^2}+z^2=0\)

   \(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2+\left(\sqrt{2020-z^2}-y\right)^2+\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2=\left(\sqrt{2020-z^2}-y\right)^2=\left(\sqrt{2020-x^2}-z\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2020-y^2}=x\\\sqrt{2020-z^2}=y\\\sqrt{2020-x^2}=z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2020-y^2=x^2\\2020-z^2=y^2\\2020-x^2=z^2\end{matrix}\right.\)(vì \(x,y,z>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}2020=x^2+y^2\\2020=y^2+z^2\\2020=z^2+x^2\end{matrix}\right.\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)=3.2020\)

\(\Rightarrow x^2+y^2+z^2=3.1010=3030\)

\(\Rightarrow A=x^2+y^2+z^2=3030\)

Vậy \(A=3030\)

 

 

30 tháng 10 2021

hay wa 😍

27 tháng 7 2019

\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)

\(\Leftrightarrow\hept{\begin{cases}\frac{2020}{x+\sqrt{x^2+2020}}=y+\sqrt{y^2+2020}\\\frac{2020}{y+\sqrt{y^2+2020}}=x+\sqrt{x^2+2020}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+\sqrt{x^2+2020}=y+\sqrt{y^2+2020}\\-y+\sqrt{y^2+2020}=x+\sqrt{x^2+2020}\end{cases}}\)

\(\Leftrightarrow-2x-2y=0\)(cộng 2 vế )

\(\Leftrightarrow x+y=0\)

27 tháng 7 2019

Mềnh còn cách khác:)

\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)

Ta có:\(\left(\sqrt{x^2+2020}+x\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)

Lại có:\(\left(\sqrt{x^2+2020}+x\right)\left(\sqrt{y^2+2020}+y\right)=2020\)

\(\Rightarrow\sqrt{x^2+2020}-x=\sqrt{y^2+2020}+y\)

\(\Leftrightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)(1)

\(\left(\sqrt{y^2+2020}+y\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)

\(\Rightarrow\sqrt{y^2+2020}-y=\sqrt{x^2+2020}+x\)

\(\Leftrightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)(2)

Cộng vế với vế của (1) và (2) ta có:\(x+y+x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}+\sqrt{y^2+2020}-\sqrt{x^2+2020}\)

\(\Leftrightarrow2x+2y=0\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

27 tháng 7 2019

\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-2020\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\)

\(\Leftrightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)(1)

Chứng minh tương tự ta cũng có \(x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)(2)

Cộng theo vế của (1) và (2) ta được :

\(2\left(x+y\right)=\sqrt{x^2+2020}-\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{y^2+2020}\)

\(\Leftrightarrow2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

Vậy...

27 tháng 7 2019

đúng là đội tuyển toán cấp quốc gia:):v

24 tháng 9 2020

Bạn tham khảo tại đây:

Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến

9 tháng 11 2021

TK: Câu hỏi của Hà Phương Linh - Toán lớp 9 - Học trực tuyến OLM

9 tháng 11 2021

em cảm ơn a

NV
7 tháng 1 2021

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:
Áp dụng BĐT AM-GM:

\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\leq \frac{x^2+(2020-y^2)}{2}+\frac{y^2+(2020-z^2)}{2}+\frac{z^2+(2020-x^2)}{2}=3030\)Dấu "=" xảy ra khi:

\(\left\{\begin{matrix} x^2=2020-y^2\\ y^2=2020-z^2\\ z^2=2020-x^2\end{matrix}\right.\Rightarrow x=y=z=\sqrt{1010}\)

Khi đó:

$A=3(\sqrt{1010})^2=3030$