\(x^2+\sqrt{x-2020}=y^2+\sqrt{y-2020}\)

Chứng minh x=y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Ta có : \(x^2+\sqrt{x-2020}=y^2+\sqrt{y-2020}\)

\(\Leftrightarrow\left(x^2-y^2\right)+\left(\sqrt{x-2020}-\sqrt{y-2020}\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\frac{x-y}{\sqrt{x-2020}+\sqrt{y-2020}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+\frac{1}{\sqrt{x-2020}+\sqrt{y-2020}}\right)=0\)

\(\Leftrightarrow x=y\)( vì VP của ngoặc > 0 )

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....

24 tháng 9 2020

Bạn tham khảo tại đây:

Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến

27 tháng 7 2019

\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)

\(\Leftrightarrow\hept{\begin{cases}\frac{2020}{x+\sqrt{x^2+2020}}=y+\sqrt{y^2+2020}\\\frac{2020}{y+\sqrt{y^2+2020}}=x+\sqrt{x^2+2020}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+\sqrt{x^2+2020}=y+\sqrt{y^2+2020}\\-y+\sqrt{y^2+2020}=x+\sqrt{x^2+2020}\end{cases}}\)

\(\Leftrightarrow-2x-2y=0\)(cộng 2 vế )

\(\Leftrightarrow x+y=0\)

27 tháng 7 2019

Mềnh còn cách khác:)

\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)

Ta có:\(\left(\sqrt{x^2+2020}+x\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)

Lại có:\(\left(\sqrt{x^2+2020}+x\right)\left(\sqrt{y^2+2020}+y\right)=2020\)

\(\Rightarrow\sqrt{x^2+2020}-x=\sqrt{y^2+2020}+y\)

\(\Leftrightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)(1)

\(\left(\sqrt{y^2+2020}+y\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)

\(\Rightarrow\sqrt{y^2+2020}-y=\sqrt{x^2+2020}+x\)

\(\Leftrightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)(2)

Cộng vế với vế của (1) và (2) ta có:\(x+y+x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}+\sqrt{y^2+2020}-\sqrt{x^2+2020}\)

\(\Leftrightarrow2x+2y=0\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

27 tháng 7 2019

\(\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2020}\right)\left(x-\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2020\right)\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-2020\left(y+\sqrt{y^2+2020}\right)=2020\left(x-\sqrt{x^2+2020}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+2020}=x-\sqrt{x^2+2020}\)

\(\Leftrightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)(1)

Chứng minh tương tự ta cũng có \(x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)(2)

Cộng theo vế của (1) và (2) ta được :

\(2\left(x+y\right)=\sqrt{x^2+2020}-\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{y^2+2020}\)

\(\Leftrightarrow2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

Vậy...

27 tháng 7 2019

đúng là đội tuyển toán cấp quốc gia:):v

NM
10 tháng 1 2021

bài 1 ta có 

\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)  ( BDT Bunhia )

do đó

\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)

vậy ta có đpcm.

bài 2.

ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )

\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)

suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)

A.2

......

Chúc học tốt

1 tháng 2 2020

xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa