K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

22 tháng 11 2023

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)

11 tháng 3 2023

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

26 tháng 8 2021

\(8\left|x-2017\right|=25-y^{2\text{​​}}\)

\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)

Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
$xy^2+2x-y^2=8$

$(xy^2-y^2)+(2x-2)=6$

$y^2(x-1)+2(x-1)=6$

$(y^2+2)(x-1)=6$

Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau:

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Lời giải:

$x^2+xy-6y^2+x+13y=17$

$\Leftrightarrow x^2+x(y+1)+(-6y^2+13y-17)=0$

Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:

$\Delta=(y+1)^2-4(-6y^2+13y-17)=t^2$ với $t$ là số tự nhiên

$\Leftrightarrow 25y^2-50y+69=t^2$

$\Leftrightarrow (5y-5)^2+44=t^2$

$\Leftrightarrow 44=t^2-(5y-5)^2=(t-5y+5)(t-5y-5)$

Đến đây là dạng pt tích đơn giản rồi.