K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2020

\(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-0,8\)

\(sin2a=2sina.cosa=0,96\)

\(tana=\frac{sina}{cosa}=0,75\)

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-

30 tháng 3 2017

undefined

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

$\sin ^2a+\cos ^2a=1$

$\cos ^2a=1-\sin ^2a=1-(\frac{-5}{13})^2=\frac{144}{169}$

Vì $\pi < a< \frac{3\pi}{2}$ nên $\cos a< 0$

Do đó: $\cos a=-\sqrt{\frac{144}{169}}=\frac{-12}{13}$

$\sin 2a=2\sin a\cos a=2.\frac{-5}{13}.\frac{-12}{13}=\frac{120}{169}$

$\cos 2a=\cos ^2a-\sin ^2a=2\cos ^2a-1=2.\frac{144}{169}-1=\frac{119}{169}$

$\cos a=\cos ^2\frac{a}{2}-\sin ^2\frac{a}{2}$

$=1-2\sin ^2\frac{a}{2}$

$\Leftrightarrow \frac{-12}{13}=1-2\sin ^2\frac{a}{2}$

$\Rightarrow \sin ^2\frac{a}{2}=\frac{25}{26}$

Vì $\pi < a< \frac{3\pi}{2}$ nên $\sin \frac{a}{2}>0$

$\Rightarrow \sin \frac{a}{2}=\frac{5}{\sqrt{26}}$

16 tháng 5 2020

--.--  \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ

16 tháng 5 2020

\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)

\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)

\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)

\(\cos2a=2\cos^2a-1=\frac{7}{25}\)

\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)

\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)

\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)

\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)

\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)

Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)

\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)

 Do pi/2 < a < pi nên ta có điều kiện : 1 > sina > 0; -1 < cosa < 0 
sin2a = -5/9 ---> 2sina.cosa = -5/9 (1) 
Mặt khác sin^2 (a) + cos^2 (a) = 1 (2) 
(1),(2) ---> (sina + cosa)^2 = 4/9 
---> sina + cosa = 2/3 (3) hoặc sina + cosa = -2/3 (4) 
(1) ---> sina.cosa = -5/18 (5) 
(3),(5) ---> sina = (2 + căn 14)/6 ; cosa = (2 - căn 14)/6 
(4),(5) ---> sina = (-2 + căn 14)/6 ; cosa = (-2 - căn 14)/6. 
Có 2 đáp án như đã nêu trên (đều thỏa mãn ĐK đã đặt ra)

13 tháng 4 2016

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.