Nếu tan\(\frac{\beta}{2}=4tan\frac{\alpha}{2}\) thì tan\(\frac{\beta-\alpha}{2}\)bằng:
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Những câu hỏi liên quan
![](https://rs.olm.vn/images/avt/0.png?1311)
NV
Nguyễn Việt Lâm
Giáo viên
25 tháng 5 2020
\(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}=1\)
\(\Rightarrow a+b=45^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
NV
Nguyễn Việt Lâm
Giáo viên
29 tháng 5 2020
\(A=tan\left(a+b\right)=tan\frac{\pi}{4}=1\)
Ta có: \(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}\)
\(\Rightarrow B=tana+tanb=tan\left(a+b\right)\left(1-tana.tanb\right)=1.\left(1-3+2\sqrt{2}\right)=2\sqrt{2}-2\)
\(\left\{{}\begin{matrix}tana+tanb=2\sqrt{2}-2\\tana.tanb=3-2\sqrt{2}\end{matrix}\right.\)
Theo Viet đảo, \(tana;tanb\) là nghiệm của:
\(x^2-\left(2\sqrt{2}-2\right)x+3-2\sqrt{2}=0\)
\(\Leftrightarrow\left(x-\sqrt{2}+1\right)^2=0\Rightarrow x=\sqrt{2}-1\)
\(\Rightarrow tana=tanb=\sqrt{2}-1\Rightarrow a=b=\frac{\pi}{8}\)
Lời giải:
Đặt $\frac{b}{2}=m; \frac{a}{2}=n$
Ta có:
$\tan m=4\tan n$.
$\tan (m-n)=\frac{\tan m-\tan n}{1+\tan m\tan n}=\frac{3\tan n}{1+4\tan ^2n}$
....
Thực ra nó chả ra một con số cụ thể nào cả, và cũng có nhiều kết quả biến đổi. Có lẽ bạn viết thiếu đề.